Nuprl Lemma : comb_for_mset_map_wf

λs,s',f,a,z. msmap{s,s'}(f;a) ∈ s:DSet ⟶ s':DSet ⟶ f:(|s| ⟶ |s'|) ⟶ a:MSet{s} ⟶ (↓True) ⟶ MSet{s'}


Proof




Definitions occuring in Statement :  mset_map: msmap{s,s'}(f;a) mset: MSet{s} squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: dset: DSet
Lemmas referenced :  mset_map_wf squash_wf true_wf mset_wf set_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry isectElimination functionEquality setElimination rename

Latex:
\mlambda{}s,s',f,a,z.  msmap\{s,s'\}(f;a)  \mmember{}  s:DSet  {}\mrightarrow{}  s':DSet  {}\mrightarrow{}  f:(|s|  {}\mrightarrow{}  |s'|)  {}\mrightarrow{}  a:MSet\{s\}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  MSet\000C\{s'\}



Date html generated: 2016_05_16-AM-07_48_42
Last ObjectModification: 2015_12_28-PM-06_02_21

Theory : mset


Home Index