Nuprl Lemma : comb_for_mset_sum_wf
λs,a,b,z. (a + b) ∈ s:DSet ⟶ a:MSet{s} ⟶ b:MSet{s} ⟶ (↓True) ⟶ MSet{s}
Proof
Definitions occuring in Statement : 
mset_sum: a + b
, 
mset: MSet{s}
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
dset: DSet
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
mset_sum_wf, 
squash_wf, 
true_wf, 
mset_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination
Latex:
\mlambda{}s,a,b,z.  (a  +  b)  \mmember{}  s:DSet  {}\mrightarrow{}  a:MSet\{s\}  {}\mrightarrow{}  b:MSet\{s\}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  MSet\{s\}
Date html generated:
2016_05_16-AM-07_46_43
Last ObjectModification:
2015_12_28-PM-06_03_36
Theory : mset
Home
Index