Nuprl Lemma : mset_mem_null_lemma
∀x,s:Top.  (x ∈b 0{s} ~ ff)
Proof
Definitions occuring in Statement : 
mset_mem: mset_mem, 
null_mset: 0{s}
, 
bfalse: ff
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
null_mset: 0{s}
, 
mset_mem: mset_mem, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
mem_nil_lemma, 
istype-void, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
inhabitedIsType, 
hypothesisEquality
Latex:
\mforall{}x,s:Top.    (x  \mmember{}\msubb{}  0\{s\}  \msim{}  ff)
Date html generated:
2019_10_16-PM-01_06_26
Last ObjectModification:
2018_10_08-PM-00_20_23
Theory : mset
Home
Index