Step
*
1
of Lemma
cons_functionality_wrt_permr_upto
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. EquivRel(T;x,y.R[x;y])
4. a : T
5. b : T
6. as : T List
7. bs : T List
8. R[a;b]
9. as ≡ bs upto x,y.R[x;y]
⊢ [a / as] ≡ [b / bs] upto x,y.R[x;y]
BY
{ ((BLemma `permr_upto_split` THENM FLemma `permr_upto_split` [9]) THEN Auto) }
1
1. T : Type
2. R : T ⟶ T ⟶ ℙ
3. EquivRel(T;x,y.R[x;y])
4. a : T
5. b : T
6. as : T List
7. bs : T List
8. R[a;b]
9. as ≡ bs upto x,y.R[x;y]
10. ∃cs:T List. ((as ≡(T) cs) ∧ cs = bs upto {x,y.R[x;y]})
⊢ ∃cs:T List. (([a / as] ≡(T) cs) ∧ cs = [b / bs] upto {x,y.R[x;y]})
Latex:
Latex:
1. T : Type
2. R : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. EquivRel(T;x,y.R[x;y])
4. a : T
5. b : T
6. as : T List
7. bs : T List
8. R[a;b]
9. as \mequiv{} bs upto x,y.R[x;y]
\mvdash{} [a / as] \mequiv{} [b / bs] upto x,y.R[x;y]
By
Latex:
((BLemma `permr\_upto\_split` THENM FLemma `permr\_upto\_split` [9]) THEN Auto)
Home
Index