Nuprl Lemma : cons_functionality_wrt_permr_upto
∀T:Type. ∀R:T ⟶ T ⟶ ℙ.
  (EquivRel(T;x,y.R[x;y])
  
⇒ (∀a,b:T. ∀as,bs:T List.  (R[a;b] 
⇒ as ≡ bs upto x,y.R[x;y]  
⇒ [a / as] ≡ [b / bs] upto x,y.R[x;y] )))
Proof
Definitions occuring in Statement : 
permr_upto: as ≡ bs upto x,y.R[x; y] 
, 
cons: [a / b]
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
permr_upto_wf, 
subtype_rel_self, 
list_wf, 
istype-universe, 
equiv_rel_wf, 
cons_wf, 
permr_upto_split, 
permr_wf, 
lequiv_wf, 
cons_functionality_wrt_permr, 
cons_functionality_wrt_lequiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
hypothesis, 
instantiate, 
isectElimination, 
universeEquality, 
functionIsType, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation_alt, 
productIsType, 
independent_pairFormation, 
because_Cache
Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (EquivRel(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}a,b:T.  \mforall{}as,bs:T  List.
                (R[a;b]  {}\mRightarrow{}  as  \mequiv{}  bs  upto  x,y.R[x;y]    {}\mRightarrow{}  [a  /  as]  \mequiv{}  [b  /  bs]  upto  x,y.R[x;y]  )))
Date html generated:
2019_10_16-PM-01_01_37
Last ObjectModification:
2018_10_08-AM-09_49_03
Theory : perms_2
Home
Index