Nuprl Lemma : cons_functionality_wrt_permr_upto

T:Type. ∀R:T ⟶ T ⟶ ℙ.
  (EquivRel(T;x,y.R[x;y])
   (∀a,b:T. ∀as,bs:T List.  (R[a;b]  as ≡ bs upto x,y.R[x;y]   [a as] ≡ [b bs] upto x,y.R[x;y] )))


Proof




Definitions occuring in Statement :  permr_upto: as ≡ bs upto x,y.R[x; y]  cons: [a b] list: List equiv_rel: EquivRel(T;x,y.E[x; y]) prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: subtype_rel: A ⊆B uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x]
Lemmas referenced :  permr_upto_wf subtype_rel_self list_wf istype-universe equiv_rel_wf cons_wf permr_upto_split permr_wf lequiv_wf cons_functionality_wrt_permr cons_functionality_wrt_lequiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality inhabitedIsType hypothesis instantiate isectElimination universeEquality functionIsType independent_functionElimination productElimination dependent_pairFormation_alt productIsType independent_pairFormation because_Cache

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (EquivRel(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}a,b:T.  \mforall{}as,bs:T  List.
                (R[a;b]  {}\mRightarrow{}  as  \mequiv{}  bs  upto  x,y.R[x;y]    {}\mRightarrow{}  [a  /  as]  \mequiv{}  [b  /  bs]  upto  x,y.R[x;y]  )))



Date html generated: 2019_10_16-PM-01_01_37
Last ObjectModification: 2018_10_08-AM-09_49_03

Theory : perms_2


Home Index