Nuprl Lemma : lequiv_wf

T:Type. ∀R:T ⟶ T ⟶ ℙ. ∀as,bs:T List.  (as bs upto {x,y.R[x;y]} ∈ ℙ)


Proof




Definitions occuring in Statement :  lequiv: as bs upto {x,y.R[x; y]} list: List prop: so_apply: x[s1;s2] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T lequiv: as bs upto {x,y.R[x; y]} prop: cand: c∧ B uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s1;s2] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_apply: x[s]
Lemmas referenced :  equal_wf length_wf all_wf int_seg_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality hypothesis because_Cache natural_numberEquality lambdaEquality_alt applyEquality setElimination rename independent_isectElimination equalityTransitivity equalitySymmetry productElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType inhabitedIsType functionIsType universeEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}as,bs:T  List.    (as  =  bs  upto  \{x,y.R[x;y]\}  \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-01_01_25
Last ObjectModification: 2018_10_08-AM-10_16_43

Theory : perms_2


Home Index