Nuprl Lemma : permr_upto_split

T:Type. ∀R:T ⟶ T ⟶ ℙ.
  (EquivRel(T;x,y.R[x;y])
   (∀as,bs:T List.  (as ≡ bs upto x,y.R[x;y]  ⇐⇒ ∃cs:T List. ((as ≡(T) cs) ∧ cs bs upto {x,y.R[x;y]}))))


Proof




Definitions occuring in Statement :  lequiv: as bs upto {x,y.R[x; y]} permr_upto: as ≡ bs upto x,y.R[x; y]  permr: as ≡(T) bs list: List equiv_rel: EquivRel(T;x,y.E[x; y]) prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uall: [x:A]. B[x] prop: rev_implies:  Q exists: x:A. B[x] permr_upto: as ≡ bs upto x,y.R[x; y]  cand: c∧ B tlambda: λx:T. b[x] sym_grp: Sym(n) perm: Perm(T) subtype_rel: A ⊆B uimplies: supposing a ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q false: False nat: less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top permr: as ≡(T) bs le: A ≤ B true: True lequiv: as bs upto {x,y.R[x; y]} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T)
Lemmas referenced :  permr_upto_wf istype-universe permr_wf lequiv_wf list_wf equiv_rel_wf listify_wf select_wf perm_f_wf int_seg_wf non_neg_length int_seg_properties decidable__le le_wf less_than_wf length_wf length_wf_nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma listify_length le_weakening2 decidable__equal_int intformeq_wf intformor_wf itermSubtract_wf int_formula_prop_eq_lemma int_formula_prop_or_lemma int_term_value_subtract_lemma equal_wf squash_wf true_wf select_listify_id subtype_rel_self iff_weakening_equal subtype_base_sq nat_wf set_subtype_base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality inhabitedIsType isectElimination hypothesis productIsType because_Cache functionIsType universeEquality productElimination dependent_pairFormation_alt natural_numberEquality equalityTransitivity equalitySymmetry setElimination rename independent_isectElimination dependent_set_memberEquality_alt unionElimination applyLambdaEquality imageElimination approximateComputation independent_functionElimination int_eqEquality isect_memberEquality_alt voidElimination imageMemberEquality baseClosed instantiate equalityIsType1 cumulativity intEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (EquivRel(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}as,bs:T  List.
                (as  \mequiv{}  bs  upto  x,y.R[x;y]    \mLeftarrow{}{}\mRightarrow{}  \mexists{}cs:T  List.  ((as  \mequiv{}(T)  cs)  \mwedge{}  cs  =  bs  upto  \{x,y.R[x;y]\}))))



Date html generated: 2019_10_16-PM-01_01_34
Last ObjectModification: 2018_10_08-PM-05_38_47

Theory : perms_2


Home Index