Nuprl Lemma : permr_upto_wf

T:Type. ∀R:T ⟶ T ⟶ ℙ. ∀as,bs:T List.  (as ≡ bs upto x,y.R[x;y]  ∈ ℙ)


Proof




Definitions occuring in Statement :  permr_upto: as ≡ bs upto x,y.R[x; y]  list: List prop: so_apply: x[s1;s2] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  permr_upto: as ≡ bs upto x,y.R[x; y]  all: x:A. B[x] member: t ∈ T prop: cand: c∧ B uall: [x:A]. B[x] sym_grp: Sym(n) so_lambda: λ2x.t[x] so_apply: x[s1;s2] perm: Perm(T) subtype_rel: A ⊆B uimplies: supposing a ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q false: False nat: less_than: a < b squash: T not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s]
Lemmas referenced :  equal_wf length_wf exists_wf perm_wf int_seg_wf all_wf select_wf perm_f_wf non_neg_length int_seg_properties decidable__le le_wf less_than_wf length_wf_nat nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut productEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality hypothesis because_Cache dependent_functionElimination natural_numberEquality lambdaEquality_alt applyEquality setElimination rename independent_isectElimination equalityTransitivity equalitySymmetry productElimination dependent_set_memberEquality_alt independent_pairFormation productIsType universeIsType unionElimination applyLambdaEquality imageElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination inhabitedIsType functionIsType universeEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}as,bs:T  List.    (as  \mequiv{}  bs  upto  x,y.R[x;y]    \mmember{}  \mBbbP{})



Date html generated: 2019_10_16-PM-01_01_08
Last ObjectModification: 2018_10_08-AM-10_05_54

Theory : perms_2


Home Index