Nuprl Lemma : listify_length
∀[T:Type]. ∀m,n:ℤ. ∀f:{m..n-} ⟶ T.  (n < m ∨ (||listify(f;m;n)|| = (n - m) ∈ ℤ))
Proof
Definitions occuring in Statement : 
length: ||as||
, 
listify: listify(f;m;n)
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
int_lower: {...i}
, 
so_apply: x[s]
, 
listify: listify(f;m;n)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
int_seg_wf, 
decidable__le, 
decidable__lt, 
equal_wf, 
length_wf, 
listify_wf, 
subtract_wf, 
false_wf, 
not-lt-2, 
decidable__int_equal, 
not-equal-2, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel, 
or_wf, 
less_than_wf, 
int_lower_ind, 
all_wf, 
int_lower_wf, 
le_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
le_wf, 
add-mul-special, 
zero-mul, 
lt_int_wf, 
bnot_wf, 
less_than_irreflexivity, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
length_of_nil_lemma, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
length_of_cons_lemma, 
equal-wf-T-base, 
add-associates, 
le-add-cancel-alt, 
subtype_rel_dep_function, 
int_seg_subtype, 
add-zero, 
le_reflexive, 
le_antisymmetry_iff, 
minus-minus, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
functionEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
intEquality, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
inlFormation, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
addEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
because_Cache, 
minusEquality, 
independent_functionElimination, 
addLevel, 
orFunctionality, 
instantiate, 
setElimination, 
rename, 
functionExtensionality, 
baseApply, 
closedConclusion, 
baseClosed, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}m,n:\mBbbZ{}.  \mforall{}f:\{m..n\msupminus{}\}  {}\mrightarrow{}  T.    (n  <  m  \mvee{}  (||listify(f;m;n)||  =  (n  -  m)))
Date html generated:
2017_04_14-AM-08_36_04
Last ObjectModification:
2017_02_27-PM-03_28_19
Theory : list_0
Home
Index