Nuprl Lemma : listify_length

[T:Type]. ∀m,n:ℤ. ∀f:{m..n-} ⟶ T.  (n < m ∨ (||listify(f;m;n)|| (n m) ∈ ℤ))


Proof




Definitions occuring in Statement :  length: ||as|| listify: listify(f;m;n) int_seg: {i..j-} less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q function: x:A ⟶ B[x] subtract: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q prop: iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a guard: {T} subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] int_lower: {...i} so_apply: x[s] listify: listify(f;m;n) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  int_seg_wf decidable__le decidable__lt equal_wf length_wf listify_wf subtract_wf false_wf not-lt-2 decidable__int_equal not-equal-2 not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel or_wf less_than_wf int_lower_ind all_wf int_lower_wf le_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_wf add-mul-special zero-mul lt_int_wf bnot_wf less_than_irreflexivity uiff_transitivity eqtt_to_assert assert_of_le_int length_of_nil_lemma eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int length_of_cons_lemma equal-wf-T-base add-associates le-add-cancel-alt subtype_rel_dep_function int_seg_subtype add-zero le_reflexive le_antisymmetry_iff minus-minus zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation functionEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis cumulativity intEquality universeEquality dependent_functionElimination unionElimination inlFormation independent_pairFormation voidElimination productElimination independent_isectElimination sqequalRule inrFormation addEquality natural_numberEquality applyEquality lambdaEquality isect_memberEquality voidEquality because_Cache minusEquality independent_functionElimination addLevel orFunctionality instantiate setElimination rename functionExtensionality baseApply closedConclusion baseClosed equalityElimination equalityTransitivity equalitySymmetry multiplyEquality dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}m,n:\mBbbZ{}.  \mforall{}f:\{m..n\msupminus{}\}  {}\mrightarrow{}  T.    (n  <  m  \mvee{}  (||listify(f;m;n)||  =  (n  -  m)))



Date html generated: 2017_04_14-AM-08_36_04
Last ObjectModification: 2017_02_27-PM-03_28_19

Theory : list_0


Home Index