Nuprl Lemma : cons_functionality_wrt_lequiv

T:Type. ∀R:T ⟶ T ⟶ ℙ.
  (EquivRel(T;x,y.R[x;y])
   (∀a,b:T. ∀as,bs:T List.  (R[a;b]  as bs upto {x,y.R[x;y]}  [a as] [b bs] upto {x,y.R[x;y]})))


Proof




Definitions occuring in Statement :  lequiv: as bs upto {x,y.R[x; y]} cons: [a b] list: List equiv_rel: EquivRel(T;x,y.E[x; y]) prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: subtype_rel: A ⊆B uall: [x:A]. B[x] lequiv: as bs upto {x,y.R[x; y]} cand: c∧ B top: Top decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q int_seg: {i..j-} sq_type: SQType(T) guard: {T} select: L[n] cons: [a b] lelt: i ≤ j < k ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  lequiv_wf subtype_rel_self list_wf istype-universe equiv_rel_wf length_of_cons_lemma istype-void decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf int_seg_wf length_wf cons_wf subtype_base_sq int_subtype_base select_cons_tl int_seg_properties decidable__lt intformless_wf intformle_wf int_formula_prop_less_lemma int_formula_prop_le_lemma non_neg_length decidable__le iff_weakening_equal subtract_wf itermSubtract_wf int_term_value_subtract_lemma le_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality inhabitedIsType hypothesis instantiate isectElimination universeEquality functionIsType productElimination independent_pairFormation isect_memberEquality_alt voidElimination because_Cache unionElimination equalityTransitivity equalitySymmetry natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality setElimination rename cumulativity intEquality dependent_set_memberEquality_alt productIsType

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (EquivRel(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}a,b:T.  \mforall{}as,bs:T  List.
                (R[a;b]  {}\mRightarrow{}  as  =  bs  upto  \{x,y.R[x;y]\}  {}\mRightarrow{}  [a  /  as]  =  [b  /  bs]  upto  \{x,y.R[x;y]\})))



Date html generated: 2019_10_16-PM-01_01_28
Last ObjectModification: 2018_10_08-AM-09_26_46

Theory : perms_2


Home Index