Nuprl Lemma : comb_for_lookup_wf

λa,B,z,k,xs,z1. (xs[k]) ∈ a:PosetSig ⟶ B:Type ⟶ z:B ⟶ k:|a| ⟶ xs:((|a| × B) List) ⟶ (↓True) ⟶ B


Proof




Definitions occuring in Statement :  lookup: as[k] list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type set_car: |p| poset_sig: PosetSig
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop:
Lemmas referenced :  lookup_wf squash_wf true_wf list_wf set_car_wf poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry isectElimination productEquality universeEquality

Latex:
\mlambda{}a,B,z,k,xs,z1.  (xs[k])  \mmember{}  a:PosetSig  {}\mrightarrow{}  B:Type  {}\mrightarrow{}  z:B  {}\mrightarrow{}  k:|a|  {}\mrightarrow{}  xs:((|a|  \mtimes{}  B)  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \000CB



Date html generated: 2016_05_16-AM-08_16_39
Last ObjectModification: 2015_12_28-PM-06_27_43

Theory : polynom_2


Home Index