Nuprl Lemma : comb_for_lookup_wf
λa,B,z,k,xs,z1. (xs[k]) ∈ a:PosetSig ⟶ B:Type ⟶ z:B ⟶ k:|a| ⟶ xs:((|a| × B) List) ⟶ (↓True) ⟶ B
Proof
Definitions occuring in Statement : 
lookup: as[k]
, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
set_car: |p|
, 
poset_sig: PosetSig
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
lookup_wf, 
squash_wf, 
true_wf, 
list_wf, 
set_car_wf, 
poset_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination, 
productEquality, 
universeEquality
Latex:
\mlambda{}a,B,z,k,xs,z1.  (xs[k])  \mmember{}  a:PosetSig  {}\mrightarrow{}  B:Type  {}\mrightarrow{}  z:B  {}\mrightarrow{}  k:|a|  {}\mrightarrow{}  xs:((|a|  \mtimes{}  B)  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \000CB
Date html generated:
2016_05_16-AM-08_16_39
Last ObjectModification:
2015_12_28-PM-06_27_43
Theory : polynom_2
Home
Index