Nuprl Lemma : comb_for_sd_ordered_wf
λs,as,z. sd_ordered(as) ∈ s:DSet ⟶ as:(|s| List) ⟶ (↓True) ⟶ 𝔹
Proof
Definitions occuring in Statement :
sd_ordered: sd_ordered(as)
,
list: T List
,
bool: 𝔹
,
squash: ↓T
,
true: True
,
member: t ∈ T
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
member: t ∈ T
,
squash: ↓T
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
dset: DSet
Lemmas referenced :
sd_ordered_wf,
squash_wf,
true_wf,
list_wf,
set_car_wf,
dset_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
cut,
lemma_by_obid,
dependent_functionElimination,
thin,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
isectElimination,
setElimination,
rename
Latex:
\mlambda{}s,as,z. sd\_ordered(as) \mmember{} s:DSet {}\mrightarrow{} as:(|s| List) {}\mrightarrow{} (\mdownarrow{}True) {}\mrightarrow{} \mBbbB{}
Date html generated:
2016_05_16-AM-08_15_04
Last ObjectModification:
2015_12_28-PM-06_28_47
Theory : polynom_2
Home
Index