Nuprl Lemma : comb_for_sd_ordered_wf

λs,as,z. sd_ordered(as) ∈ s:DSet ⟶ as:(|s| List) ⟶ (↓True) ⟶ 𝔹


Proof




Definitions occuring in Statement :  sd_ordered: sd_ordered(as) list: List bool: 𝔹 squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: dset: DSet
Lemmas referenced :  sd_ordered_wf squash_wf true_wf list_wf set_car_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry isectElimination setElimination rename

Latex:
\mlambda{}s,as,z.  sd\_ordered(as)  \mmember{}  s:DSet  {}\mrightarrow{}  as:(|s|  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}



Date html generated: 2016_05_16-AM-08_15_04
Last ObjectModification: 2015_12_28-PM-06_28_47

Theory : polynom_2


Home Index