Nuprl Lemma : oal_umap_char_a

s:LOSet. ∀g:AbDMon. ∀h:AbMon. ∀f:|s| ⟶ MonHom(g,h).
  umap(h,f) !v:|oal(s;g)| ⟶ |h|
                (IsMonHom{oal_mon(s;g),h}(v) ∧ (∀j:|s|. ((f j) (v w.inj(j,w))) ∈ (|g| ⟶ |h|))))


Proof




Definitions occuring in Statement :  oal_umap: umap(h,f) oal_inj: inj(k,v) oal_mon: oal_mon(a;b) oalist: oal(a;b) compose: g uni_sat: !x:T. Q[x] all: x:A. B[x] and: P ∧ Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) monoid_hom_p: IsMonHom{M1,M2}(f) abdmonoid: AbDMon abmonoid: AbMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  oal_umap: umap(h,f)
Lemmas referenced :  oal_umap_char
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lemma_by_obid

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}h:AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  MonHom(g,h).
    umap(h,f)  =  !v:|oal(s;g)|  {}\mrightarrow{}  |h|
                                (IsMonHom\{oal\_mon(s;g),h\}(v)  \mwedge{}  (\mforall{}j:|s|.  ((f  j)  =  (v  o  (\mlambda{}w.inj(j,w))))))



Date html generated: 2016_05_16-AM-08_22_59
Last ObjectModification: 2015_12_28-PM-06_24_48

Theory : polynom_2


Home Index