Nuprl Lemma : oal_umap_char

s:LOSet. ∀g:AbDMon. ∀h:AbMon. ∀f:|s| ⟶ MonHom(g,h).
  ps:|oal(s;g)|. msFor{h} k ∈ dom(ps)
                     (f (ps[k]))) !v:|oal(s;g)| ⟶ |h|
                                        (IsMonHom{oal_mon(s;g),h}(v)
                                        ∧ (∀j:|s|. ((f j) (v w.inj(j,w))) ∈ (|g| ⟶ |h|))))


Proof




Definitions occuring in Statement :  oal_inj: inj(k,v) oal_mon: oal_mon(a;b) lookup: as[k] oal_dom: dom(ps) oalist: oal(a;b) mset_for: mset_for compose: g tlambda: λx:T. b[x] uni_sat: !x:T. Q[x] all: x:A. B[x] and: P ∧ Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) monoid_hom_p: IsMonHom{M1,M2}(f) abdmonoid: AbDMon abmonoid: AbMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdmonoid: AbDMon dmon: DMon mon: Mon abmonoid: AbMon monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) uni_sat: !x:T. Q[x] and: P ∧ Q implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set oal_mon: oal_mon(a;b) grp_car: |g| prop: monoid_hom: MonHom(M1,M2) tlambda: λx:T. b[x] grp_op: * pi2: snd(t) grp_id: e infix_ap: y squash: T so_lambda: λ2x.t[x] so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) band: p ∧b q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bor: p ∨bq bnot: ¬bb assert: b false: False rev_uimplies: rev_uimplies(P;Q) oal_nil: 00 null_mset: 0{s} oal_dom: dom(ps) mk_mset: mk_mset(as) top: Top compose: g finite_set: FiniteSet{s} not: ¬A mon_when: when b. p
Lemmas referenced :  set_car_wf monoid_hom_wf abmonoid_wf abdmonoid_wf loset_wf monoid_hom_properties monoid_hom_p_wf oal_mon_wf mon_subtype_grp_sig dmon_subtype_mon abdmonoid_dmon subtype_rel_transitivity dmon_wf mon_wf grp_sig_wf grp_car_wf compose_wf oalist_wf oal_inj_wf equal_wf squash_wf true_wf istype-universe mset_for_dom_shift abmonoid_subtype_iabmonoid lookup_wf grp_id_wf oal_merge_wf oal_dom_wf abdmonoid_abmonoid mset_union_wf oal_dom_merge assert_wf mset_mem_wf mset_diff_wf grp_op_wf subtype_rel_self iff_weakening_equal lookup_oal_eq_id oal_merge_wf2 assert_functionality_wrt_uiff bor_wf eqtt_to_assert assert_of_bor bnot_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot bfalse_wf mset_mem_diff mset_union_wf_f oal_dom_wf2 band_wf fset_mem_union iff_transitivity or_wf not_wf iff_weakening_uiff assert_of_band assert_of_bnot mem_bsubmset mset_for_functionality infix_ap_wf dset_of_mon_wf0 lookup_merge mset_for_of_op mset_for_wf map_nil_lemma istype-void lookup_nil_lemma mset_for_null_lemma mon_when_wf iabmonoid_subtype_imon iabmonoid_wf imon_wf set_eq_wf ifthenelse_wf grp_eq_wf mset_wf null_mset_wf mset_inj_wf oal_dom_inj lookup_oal_inj uiff_transitivity equal-wf-T-base assert_of_mon_eq mset_for_mset_inj member_wf assert_of_dset_eq dist_hom_over_mset_for oalist_fact
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt functionIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality equalityTransitivity equalitySymmetry sqequalRule independent_pairFormation productElimination productIsType dependent_functionElimination instantiate independent_isectElimination because_Cache equalityIsType1 lambdaEquality_alt inhabitedIsType isect_memberFormation_alt isect_memberEquality_alt axiomEquality imageElimination universeEquality independent_functionElimination natural_numberEquality imageMemberEquality baseClosed unionElimination equalityElimination dependent_pairFormation_alt promote_hyp cumulativity voidElimination productEquality unionIsType inlFormation_alt inrFormation_alt functionEquality functionExtensionality_alt dependent_set_memberEquality_alt

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}h:AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  MonHom(g,h).
    (\mlambda{}ps:|oal(s;g)|.  msFor\{h\}  k  \mmember{}  dom(ps)
                                          (f  k  (ps[k])))  =  !v:|oal(s;g)|  {}\mrightarrow{}  |h|
                                                                                (IsMonHom\{oal\_mon(s;g),h\}(v)
                                                                                \mwedge{}  (\mforall{}j:|s|.  ((f  j)  =  (v  o  (\mlambda{}w.inj(j,w))))))



Date html generated: 2019_10_16-PM-01_08_57
Last ObjectModification: 2018_10_08-PM-00_19_56

Theory : polynom_2


Home Index