Nuprl Lemma : null_mset_wf

s:DSet. (0{s} ∈ MSet{s})


Proof




Definitions occuring in Statement :  null_mset: 0{s} mset: MSet{s} all: x:A. B[x] member: t ∈ T dset: DSet
Definitions unfolded in proof :  null_mset: 0{s} all: x:A. B[x] member: t ∈ T mset: MSet{s} uall: [x:A]. B[x] dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a implies:  Q
Lemmas referenced :  dset_wf quotient-member-eq list_wf set_car_wf permr_wf permr_equiv_rel nil_wf permr_reflex
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality lambdaEquality dependent_functionElimination independent_isectElimination because_Cache independent_functionElimination

Latex:
\mforall{}s:DSet.  (0\{s\}  \mmember{}  MSet\{s\})



Date html generated: 2016_05_16-AM-07_46_22
Last ObjectModification: 2015_12_28-PM-06_04_01

Theory : mset


Home Index