Nuprl Lemma : mset_for_mset_inj

s:DSet. ∀g:IAbMonoid. ∀f:|s| ⟶ |g|. ∀u:|s|.  ((msFor{g} x ∈ mset_inj{s}(u). f[x]) f[u] ∈ |g|)


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_inj: mset_inj{s}(x) so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] equal: t ∈ T iabmonoid: IAbMonoid grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] mset_inj: mset_inj{s}(x) mset_for: mset_for mk_mset: mk_mset(as) so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s] uall: [x:A]. B[x] dset: DSet iabmonoid: IAbMonoid imon: IMonoid squash: T prop: and: P ∧ Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  mon_for_cons_lemma mon_for_nil_lemma set_car_wf grp_car_wf iabmonoid_wf dset_wf equal_wf squash_wf true_wf mon_ident iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination setElimination rename hypothesisEquality functionEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality functionExtensionality productElimination because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}u:|s|.    ((msFor\{g\}  x  \mmember{}  mset\_inj\{s\}(u).  f[x])  =  f[u])



Date html generated: 2017_10_01-AM-09_59_21
Last ObjectModification: 2017_03_03-PM-01_00_13

Theory : mset


Home Index