Nuprl Lemma : mset_for_mset_inj
∀s:DSet. ∀g:IAbMonoid. ∀f:|s| ⟶ |g|. ∀u:|s|.  ((msFor{g} x ∈ mset_inj{s}(u). f[x]) = f[u] ∈ |g|)
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset_inj: mset_inj{s}(x)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
mset_inj: mset_inj{s}(x)
, 
mset_for: mset_for, 
mk_mset: mk_mset(as)
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
squash: ↓T
, 
prop: ℙ
, 
and: P ∧ Q
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
mon_for_cons_lemma, 
mon_for_nil_lemma, 
set_car_wf, 
grp_car_wf, 
iabmonoid_wf, 
dset_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mon_ident, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
functionEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
functionExtensionality, 
productElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}s:DSet.  \mforall{}g:IAbMonoid.  \mforall{}f:|s|  {}\mrightarrow{}  |g|.  \mforall{}u:|s|.    ((msFor\{g\}  x  \mmember{}  mset\_inj\{s\}(u).  f[x])  =  f[u])
Date html generated:
2017_10_01-AM-09_59_21
Last ObjectModification:
2017_03_03-PM-01_00_13
Theory : mset
Home
Index