Nuprl Lemma : oal_dom_merge
∀a:LOSet. ∀b:AbDMon. ∀ps,qs:|oal(a;b)|.  (↑(dom(ps ++ qs) ⊆b (dom(ps) ⋃ dom(qs))))
Proof
Definitions occuring in Statement : 
oal_merge: ps ++ qs, 
oal_dom: dom(ps), 
oalist: oal(a;b), 
bsubmset: a ⊆b b, 
mset_union: a ⋃ b, 
assert: ↑b, 
all: ∀x:A. B[x], 
abdmonoid: AbDMon, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
dset: DSet, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
dset_list: s List, 
set_prod: s × t, 
dset_of_mon: g↓set, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
false: False, 
oal_dom: dom(ps), 
mset_mem: mset_mem, 
mk_mset: mk_mset(as), 
mem: a ∈b as, 
bexists: bexists, 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
infix_ap: x f y
Lemmas referenced : 
set_car_wf, 
oalist_wf, 
dset_wf, 
abdmonoid_wf, 
loset_wf, 
mem_bsubmset, 
oal_dom_wf2, 
oal_merge_wf2, 
mset_union_wf, 
oal_dom_wf, 
abdmonoid_abmonoid, 
assert_wf, 
mset_mem_wf, 
oal_merge_wf, 
assert_functionality_wrt_uiff, 
bor_wf, 
fset_mem_union, 
assert_of_bor, 
decidable__or, 
decidable__assert, 
not_over_or, 
uiff_transitivity, 
not_wf, 
bexists_wf, 
map_wf, 
grp_car_wf, 
infix_ap_wf, 
bool_wf, 
set_eq_wf, 
bnot_wf, 
ball_wf, 
assert_of_bnot, 
bnot_thru_exists, 
set_prod_wf, 
dset_of_mon_wf, 
oal_merge_dom_pred
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
unionElimination, 
voidElimination, 
productEquality, 
independent_pairFormation, 
promote_hyp
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:|oal(a;b)|.    (\muparrow{}(dom(ps  ++  qs)  \msubseteq{}\msubb{}  (dom(ps)  \mcup{}  dom(qs))))
Date html generated:
2016_05_16-AM-08_18_05
Last ObjectModification:
2015_12_28-PM-06_27_42
Theory : polynom_2
Home
Index