Nuprl Lemma : oal_dom_merge

a:LOSet. ∀b:AbDMon. ∀ps,qs:|oal(a;b)|.  (↑(dom(ps ++ qs) ⊆b (dom(ps) ⋃ dom(qs))))


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs oal_dom: dom(ps) oalist: oal(a;b) bsubmset: a ⊆b b mset_union: a ⋃ b assert: b all: x:A. B[x] abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet loset: LOSet poset: POSet{i} qoset: QOSet oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop: uimplies: supposing a guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) decidable: Dec(P) or: P ∨ Q not: ¬A false: False oal_dom: dom(ps) mset_mem: mset_mem mk_mset: mk_mset(as) mem: a ∈b as bexists: bexists abdmonoid: AbDMon dmon: DMon mon: Mon so_lambda: λ2x.t[x] so_apply: x[s] infix_ap: y
Lemmas referenced :  set_car_wf oalist_wf dset_wf abdmonoid_wf loset_wf mem_bsubmset oal_dom_wf2 oal_merge_wf2 mset_union_wf oal_dom_wf abdmonoid_abmonoid assert_wf mset_mem_wf oal_merge_wf assert_functionality_wrt_uiff bor_wf fset_mem_union assert_of_bor decidable__or decidable__assert not_over_or uiff_transitivity not_wf bexists_wf map_wf grp_car_wf infix_ap_wf bool_wf set_eq_wf bnot_wf ball_wf assert_of_bnot bnot_thru_exists set_prod_wf dset_of_mon_wf oal_merge_dom_pred
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule because_Cache productElimination independent_functionElimination independent_isectElimination unionElimination voidElimination productEquality independent_pairFormation promote_hyp

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:|oal(a;b)|.    (\muparrow{}(dom(ps  ++  qs)  \msubseteq{}\msubb{}  (dom(ps)  \mcup{}  dom(qs))))



Date html generated: 2016_05_16-AM-08_18_05
Last ObjectModification: 2015_12_28-PM-06_27_42

Theory : polynom_2


Home Index