Nuprl Lemma : mem_bsubmset

s:DSet. ∀a:FiniteSet{s}. ∀b:MSet{s}.  (↑(a ⊆b b) ⇐⇒ ∀x:|s|. ((↑(x ∈b a))  (↑(x ∈b b))))


Proof




Definitions occuring in Statement :  bsubmset: a ⊆b b mset_mem: mset_mem finite_set: FiniteSet{s} mset: MSet{s} assert: b all: x:A. B[x] iff: ⇐⇒ Q implies:  Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T finite_set: FiniteSet{s} implies:  Q rev_implies:  Q uall: [x:A]. B[x] prop: subtype_rel: A ⊆B nat: gt: i > j dset: DSet so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} uimplies: supposing a decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top ge: i ≥ 
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf nat_properties decidable__le decidable__equal_int int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt all_functionality_wrt_iff fset_properties dset_wf finite_set_wf mset_wf le_wf set_car_wf all_wf iff_wf nat_wf mset_count_wf gt_wf bsubmset_wf mset_mem_wf assert_wf mset_mem_iff_count_nzero count_bsubmset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut addLevel sqequalHypSubstitution productElimination thin independent_pairFormation impliesFunctionality lemma_by_obid dependent_functionElimination hypothesisEquality setElimination rename hypothesis independent_functionElimination allFunctionality because_Cache isectElimination applyEquality lambdaEquality sqequalRule natural_numberEquality allLevelFunctionality impliesLevelFunctionality functionEquality independent_isectElimination unionElimination imageElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry setEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:FiniteSet\{s\}.  \mforall{}b:MSet\{s\}.    (\muparrow{}(a  \msubseteq{}\msubb{}  b)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  a))  {}\mRightarrow{}  (\muparrow{}(x  \mmember{}\msubb{}  b))))



Date html generated: 2016_05_16-AM-07_51_01
Last ObjectModification: 2016_01_16-PM-11_40_02

Theory : mset


Home Index