Nuprl Lemma : count_bsubmset
∀s:DSet. ∀a,b:MSet{s}.  (↑(a ⊆b b) 
⇐⇒ ∀x:|s|. ((x #∈ a) ≤ (x #∈ b)))
Proof
Definitions occuring in Statement : 
bsubmset: a ⊆b b
, 
mset_count: x #∈ a
, 
mset: MSet{s}
, 
assert: ↑b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
mset: MSet{s}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
squash: ↓T
, 
mset_count: x #∈ a
, 
bsubmset: a ⊆b b
Lemmas referenced : 
count_bsublist_a, 
equal-wf-base, 
permr_equiv_rel, 
list_wf, 
permr_wf, 
subtype_quotient, 
iff_wf, 
squash_wf, 
dset_wf, 
mset_wf, 
sq_stable__le, 
sq_stable__all, 
decidable__assert, 
sq_stable_from_decidable, 
nat_wf, 
mset_count_wf, 
le_wf, 
set_car_wf, 
all_wf, 
bsubmset_wf, 
assert_wf, 
sq_stable__iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
introduction, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
productEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    (\muparrow{}(a  \msubseteq{}\msubb{}  b)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:|s|.  ((x  \#\mmember{}  a)  \mleq{}  (x  \#\mmember{}  b)))
Date html generated:
2016_05_16-AM-07_50_53
Last ObjectModification:
2016_01_16-PM-11_39_29
Theory : mset
Home
Index