Nuprl Lemma : count_bsubmset

s:DSet. ∀a,b:MSet{s}.  (↑(a ⊆b b) ⇐⇒ ∀x:|s|. ((x #∈ a) ≤ (x #∈ b)))


Proof




Definitions occuring in Statement :  bsubmset: a ⊆b b mset_count: #∈ a mset: MSet{s} assert: b le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T dset: DSet so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] implies:  Q sq_stable: SqStable(P) mset: MSet{s} iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q prop: quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a squash: T mset_count: #∈ a bsubmset: a ⊆b b
Lemmas referenced :  count_bsublist_a equal-wf-base permr_equiv_rel list_wf permr_wf subtype_quotient iff_wf squash_wf dset_wf mset_wf sq_stable__le sq_stable__all decidable__assert sq_stable_from_decidable nat_wf mset_count_wf le_wf set_car_wf all_wf bsubmset_wf assert_wf sq_stable__iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis setElimination rename sqequalRule lambdaEquality applyEquality because_Cache independent_functionElimination introduction pointwiseFunctionalityForEquality pertypeElimination productElimination independent_isectElimination imageMemberEquality baseClosed productEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    (\muparrow{}(a  \msubseteq{}\msubb{}  b)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x:|s|.  ((x  \#\mmember{}  a)  \mleq{}  (x  \#\mmember{}  b)))



Date html generated: 2016_05_16-AM-07_50_53
Last ObjectModification: 2016_01_16-PM-11_39_29

Theory : mset


Home Index