Nuprl Lemma : mset_mem_iff_count_nzero

s:DSet. ∀x:|s|. ∀a:MSet{s}.  (↑(x ∈b a) ⇐⇒ (x #∈ a) > 0)


Proof




Definitions occuring in Statement :  mset_mem: mset_mem mset_count: #∈ a mset: MSet{s} assert: b gt: i > j all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat: implies:  Q gt: i > j sq_stable: SqStable(P) dset: DSet mset: MSet{s} iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q prop: quotient: x,y:A//B[x; y] mset_count: #∈ a mset_mem: mset_mem squash: T
Lemmas referenced :  sq_stable__iff assert_wf mset_mem_wf gt_wf mset_count_wf nat_wf sq_stable_from_decidable decidable__assert sq_stable__less_than mset_wf set_car_wf dset_wf squash_wf iff_wf list_wf permr_wf equal_wf equal-wf-base mem_iff_count_nzero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule natural_numberEquality independent_functionElimination because_Cache pointwiseFunctionalityForEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productEquality

Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.  \mforall{}a:MSet\{s\}.    (\muparrow{}(x  \mmember{}\msubb{}  a)  \mLeftarrow{}{}\mRightarrow{}  (x  \#\mmember{}  a)  >  0)



Date html generated: 2017_10_01-AM-09_59_09
Last ObjectModification: 2017_03_03-PM-01_00_03

Theory : mset


Home Index