Nuprl Lemma : mset_mem_iff_count_nzero
∀s:DSet. ∀x:|s|. ∀a:MSet{s}. (↑(x ∈b a)
⇐⇒ (x #∈ a) > 0)
Proof
Definitions occuring in Statement :
mset_mem: mset_mem,
mset_count: x #∈ a
,
mset: MSet{s}
,
assert: ↑b
,
gt: i > j
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
natural_number: $n
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
implies: P
⇒ Q
,
gt: i > j
,
sq_stable: SqStable(P)
,
dset: DSet
,
mset: MSet{s}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
and: P ∧ Q
,
prop: ℙ
,
quotient: x,y:A//B[x; y]
,
mset_count: x #∈ a
,
mset_mem: mset_mem,
squash: ↓T
Lemmas referenced :
sq_stable__iff,
assert_wf,
mset_mem_wf,
gt_wf,
mset_count_wf,
nat_wf,
sq_stable_from_decidable,
decidable__assert,
sq_stable__less_than,
mset_wf,
set_car_wf,
dset_wf,
squash_wf,
iff_wf,
list_wf,
permr_wf,
equal_wf,
equal-wf-base,
mem_iff_count_nzero
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
dependent_functionElimination,
hypothesisEquality,
hypothesis,
applyEquality,
lambdaEquality,
setElimination,
rename,
sqequalRule,
natural_numberEquality,
independent_functionElimination,
because_Cache,
pointwiseFunctionalityForEquality,
pertypeElimination,
productElimination,
equalityTransitivity,
equalitySymmetry,
imageMemberEquality,
baseClosed,
productEquality
Latex:
\mforall{}s:DSet. \mforall{}x:|s|. \mforall{}a:MSet\{s\}. (\muparrow{}(x \mmember{}\msubb{} a) \mLeftarrow{}{}\mRightarrow{} (x \#\mmember{} a) > 0)
Date html generated:
2017_10_01-AM-09_59_09
Last ObjectModification:
2017_03_03-PM-01_00_03
Theory : mset
Home
Index