Nuprl Lemma : mset_mem_iff_count_nzero
∀s:DSet. ∀x:|s|. ∀a:MSet{s}.  (↑(x ∈b a) 
⇐⇒ (x #∈ a) > 0)
Proof
Definitions occuring in Statement : 
mset_mem: mset_mem, 
mset_count: x #∈ a
, 
mset: MSet{s}
, 
assert: ↑b
, 
gt: i > j
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
natural_number: $n
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
gt: i > j
, 
sq_stable: SqStable(P)
, 
dset: DSet
, 
mset: MSet{s}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
mset_count: x #∈ a
, 
mset_mem: mset_mem, 
squash: ↓T
Lemmas referenced : 
sq_stable__iff, 
assert_wf, 
mset_mem_wf, 
gt_wf, 
mset_count_wf, 
nat_wf, 
sq_stable_from_decidable, 
decidable__assert, 
sq_stable__less_than, 
mset_wf, 
set_car_wf, 
dset_wf, 
squash_wf, 
iff_wf, 
list_wf, 
permr_wf, 
equal_wf, 
equal-wf-base, 
mem_iff_count_nzero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
natural_numberEquality, 
independent_functionElimination, 
because_Cache, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
productEquality
Latex:
\mforall{}s:DSet.  \mforall{}x:|s|.  \mforall{}a:MSet\{s\}.    (\muparrow{}(x  \mmember{}\msubb{}  a)  \mLeftarrow{}{}\mRightarrow{}  (x  \#\mmember{}  a)  >  0)
Date html generated:
2017_10_01-AM-09_59_09
Last ObjectModification:
2017_03_03-PM-01_00_03
Theory : mset
Home
Index