Nuprl Lemma : mset_union_wf
∀s:DSet. ∀a,b:MSet{s}.  (a ⋃ b ∈ MSet{s})
Proof
Definitions occuring in Statement : 
mset_union: a ⋃ b
, 
mset: MSet{s}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
dset: DSet
Definitions unfolded in proof : 
mset_union: a ⋃ b
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
mset: MSet{s}
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
quotient-member-eq, 
list_wf, 
set_car_wf, 
permr_wf, 
permr_equiv_rel, 
lmax_wf, 
equal-wf-base, 
mset_wf, 
dset_wf, 
lmax_functionality_wrt_permr
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
pertypeElimination, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination, 
productEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    (a  \mcup{}  b  \mmember{}  MSet\{s\})
Date html generated:
2016_05_16-AM-07_48_53
Last ObjectModification:
2015_12_28-PM-06_02_28
Theory : mset
Home
Index