Nuprl Lemma : lmax_wf

s:DSet. ∀as,bs:|s| List.  (lmax(s;as;bs) ∈ |s| List)


Proof




Definitions occuring in Statement :  lmax: lmax(s;as;bs) list: List all: x:A. B[x] member: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T lmax: lmax(s;as;bs) uall: [x:A]. B[x] dset: DSet
Lemmas referenced :  append_wf set_car_wf diff_wf list_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis dependent_functionElimination hypothesisEquality inhabitedIsType universeIsType

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (lmax(s;as;bs)  \mmember{}  |s|  List)



Date html generated: 2019_10_16-PM-01_04_40
Last ObjectModification: 2018_10_08-AM-10_21_31

Theory : list_2


Home Index