Nuprl Lemma : oal_dom_wf2
∀a:LOSet. ∀b:AbDMon. ∀ps:|oal(a;b)|.  (dom(ps) ∈ FiniteSet{a})
Proof
Definitions occuring in Statement : 
oal_dom: dom(ps), 
oalist: oal(a;b), 
finite_set: FiniteSet{s}, 
all: ∀x:A. B[x], 
member: t ∈ T, 
abdmonoid: AbDMon, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
prop: ℙ, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
dset: DSet, 
qoset: QOSet, 
poset: POSet{i}, 
loset: LOSet, 
uall: ∀[x:A]. B[x], 
finite_set: FiniteSet{s}, 
member: t ∈ T, 
all: ∀x:A. B[x], 
dset_of_mon: g↓set, 
set_prod: s × t, 
dset_list: s List, 
pi1: fst(t), 
set_car: |p|, 
mk_dset: mk_dset(T, eq), 
dset_set: dset_set, 
oalist: oal(a;b), 
oal_dom: dom(ps), 
mset_count: x #∈ a, 
mk_mset: mk_mset(as), 
squash: ↓T, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
abdmonoid: AbDMon, 
and: P ∧ Q
Lemmas referenced : 
sd_ordered_count, 
sq_stable__le, 
count_wf, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
oal_dom_wf, 
abdmonoid_abmonoid, 
all_wf, 
set_car_wf, 
le_wf, 
mset_count_wf, 
oalist_wf, 
dset_wf, 
abdmonoid_wf, 
loset_wf
Rules used in proof : 
natural_numberEquality, 
because_Cache, 
applyEquality, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
dependent_set_memberEquality, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
introduction, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps:|oal(a;b)|.    (dom(ps)  \mmember{}  FiniteSet\{a\})
Date html generated:
2016_05_16-AM-08_16_33
Last ObjectModification:
2016_01_16-PM-11_58_14
Theory : polynom_2
Home
Index