Nuprl Lemma : oal_dom_wf2
∀a:LOSet. ∀b:AbDMon. ∀ps:|oal(a;b)|.  (dom(ps) ∈ FiniteSet{a})
Proof
Definitions occuring in Statement : 
oal_dom: dom(ps)
, 
oalist: oal(a;b)
, 
finite_set: FiniteSet{s}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
abdmonoid: AbDMon
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
dset: DSet
, 
qoset: QOSet
, 
poset: POSet{i}
, 
loset: LOSet
, 
uall: ∀[x:A]. B[x]
, 
finite_set: FiniteSet{s}
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
dset_of_mon: g↓set
, 
set_prod: s × t
, 
dset_list: s List
, 
pi1: fst(t)
, 
set_car: |p|
, 
mk_dset: mk_dset(T, eq)
, 
dset_set: dset_set, 
oalist: oal(a;b)
, 
oal_dom: dom(ps)
, 
mset_count: x #∈ a
, 
mk_mset: mk_mset(as)
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
abdmonoid: AbDMon
, 
and: P ∧ Q
Lemmas referenced : 
sd_ordered_count, 
sq_stable__le, 
count_wf, 
map_wf, 
set_prod_wf, 
dset_of_mon_wf, 
oal_dom_wf, 
abdmonoid_abmonoid, 
all_wf, 
set_car_wf, 
le_wf, 
mset_count_wf, 
oalist_wf, 
dset_wf, 
abdmonoid_wf, 
loset_wf
Rules used in proof : 
natural_numberEquality, 
because_Cache, 
applyEquality, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
dependent_set_memberEquality, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
introduction, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps:|oal(a;b)|.    (dom(ps)  \mmember{}  FiniteSet\{a\})
Date html generated:
2016_05_16-AM-08_16_33
Last ObjectModification:
2016_01_16-PM-11_58_14
Theory : polynom_2
Home
Index