Nuprl Lemma : oal_dom_wf2

a:LOSet. ∀b:AbDMon. ∀ps:|oal(a;b)|.  (dom(ps) ∈ FiniteSet{a})


Proof




Definitions occuring in Statement :  oal_dom: dom(ps) oalist: oal(a;b) finite_set: FiniteSet{s} all: x:A. B[x] member: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  prop: so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] dset: DSet qoset: QOSet poset: POSet{i} loset: LOSet uall: [x:A]. B[x] finite_set: FiniteSet{s} member: t ∈ T all: x:A. B[x] dset_of_mon: g↓set set_prod: s × t dset_list: List pi1: fst(t) set_car: |p| mk_dset: mk_dset(T, eq) dset_set: dset_set oalist: oal(a;b) oal_dom: dom(ps) mset_count: #∈ a mk_mset: mk_mset(as) squash: T implies:  Q sq_stable: SqStable(P) abdmonoid: AbDMon and: P ∧ Q
Lemmas referenced :  sd_ordered_count sq_stable__le count_wf map_wf set_prod_wf dset_of_mon_wf oal_dom_wf abdmonoid_abmonoid all_wf set_car_wf le_wf mset_count_wf oalist_wf dset_wf abdmonoid_wf loset_wf
Rules used in proof :  natural_numberEquality because_Cache applyEquality dependent_functionElimination lambdaEquality sqequalRule hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution lemma_by_obid dependent_set_memberEquality cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination baseClosed imageMemberEquality introduction independent_functionElimination productElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps:|oal(a;b)|.    (dom(ps)  \mmember{}  FiniteSet\{a\})



Date html generated: 2016_05_16-AM-08_16_33
Last ObjectModification: 2016_01_16-PM-11_58_14

Theory : polynom_2


Home Index