Nuprl Lemma : sd_ordered_count

s:QOSet. ∀as:|s| List.  ((↑sd_ordered(as))  (∀c:|s|. ((c #∈ as) ≤ 1)))


Proof




Definitions occuring in Statement :  sd_ordered: sd_ordered(as) count: #∈ as list: List assert: b le: A ≤ B all: x:A. B[x] implies:  Q natural_number: $n qoset: QOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T qoset: QOSet dset: DSet so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] uimplies: supposing a ge: i ≥  and: P ∧ Q decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] band_mon: <𝔹,∧b> grp_car: |g| pi1: fst(t) so_apply: x[s1;s2] guard: {T} uiff: uiff(P;Q) grp_op: * pi2: snd(t) infix_ap: y abmonoid: AbMon mon: Mon b2i: b2i(b) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q squash: T true: True rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  list_induction set_car_wf assert_wf sd_ordered_wf all_wf le_wf count_wf list_wf le_weakening2 nil_wf length_nil non_neg_length count_bounds length_of_nil_lemma decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma count_nil_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf assert_functionality_wrt_uiff cons_wf mon_htfor_wf band_mon_wf ball_wf set_blt_wf bool_wf sd_ordered_char mon_htfor_cons_lemma assert_of_band grp_car_wf abmonoid_wf qoset_wf count_cons_lemma set_eq_wf uiff_transitivity equal-wf-T-base equal_wf eqtt_to_assert assert_of_dset_eq iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot squash_wf true_wf add_functionality_wrt_eq dset_wf iff_weakening_equal before_all_imp_count_zero decidable__le itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename because_Cache hypothesis sqequalRule lambdaEquality functionEquality dependent_functionElimination hypothesisEquality natural_numberEquality independent_functionElimination independent_isectElimination voidEquality productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination independent_pairFormation equalityTransitivity equalitySymmetry computeAll applyEquality equalityElimination baseClosed impliesFunctionality imageElimination imageMemberEquality universeEquality addEquality

Latex:
\mforall{}s:QOSet.  \mforall{}as:|s|  List.    ((\muparrow{}sd\_ordered(as))  {}\mRightarrow{}  (\mforall{}c:|s|.  ((c  \#\mmember{}  as)  \mleq{}  1)))



Date html generated: 2017_10_01-AM-10_01_36
Last ObjectModification: 2017_03_03-PM-01_04_04

Theory : polynom_2


Home Index