Nuprl Lemma : sd_ordered_count
∀s:QOSet. ∀as:|s| List.  ((↑sd_ordered(as)) ⇒ (∀c:|s|. ((c #∈ as) ≤ 1)))
Proof
Definitions occuring in Statement : 
sd_ordered: sd_ordered(as), 
count: a #∈ as, 
list: T List, 
assert: ↑b, 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n, 
qoset: QOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
qoset: QOSet, 
dset: DSet, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
uimplies: b supposing a, 
ge: i ≥ j , 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
band_mon: <𝔹,∧b>, 
grp_car: |g|, 
pi1: fst(t), 
so_apply: x[s1;s2], 
guard: {T}, 
uiff: uiff(P;Q), 
grp_op: *, 
pi2: snd(t), 
infix_ap: x f y, 
abmonoid: AbMon, 
mon: Mon, 
b2i: b2i(b), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
true: True, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
list_induction, 
set_car_wf, 
assert_wf, 
sd_ordered_wf, 
all_wf, 
le_wf, 
count_wf, 
list_wf, 
le_weakening2, 
nil_wf, 
length_nil, 
non_neg_length, 
count_bounds, 
length_of_nil_lemma, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
count_nil_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
assert_functionality_wrt_uiff, 
cons_wf, 
mon_htfor_wf, 
band_mon_wf, 
ball_wf, 
set_blt_wf, 
bool_wf, 
sd_ordered_char, 
mon_htfor_cons_lemma, 
assert_of_band, 
grp_car_wf, 
abmonoid_wf, 
qoset_wf, 
count_cons_lemma, 
set_eq_wf, 
uiff_transitivity, 
equal-wf-T-base, 
equal_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
dset_wf, 
iff_weakening_equal, 
before_all_imp_count_zero, 
decidable__le, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
hypothesisEquality, 
natural_numberEquality, 
independent_functionElimination, 
independent_isectElimination, 
voidEquality, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
computeAll, 
applyEquality, 
equalityElimination, 
baseClosed, 
impliesFunctionality, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
addEquality
Latex:
\mforall{}s:QOSet.  \mforall{}as:|s|  List.    ((\muparrow{}sd\_ordered(as))  {}\mRightarrow{}  (\mforall{}c:|s|.  ((c  \#\mmember{}  as)  \mleq{}  1)))
Date html generated:
2017_10_01-AM-10_01_36
Last ObjectModification:
2017_03_03-PM-01_04_04
Theory : polynom_2
Home
Index