Nuprl Lemma : sd_ordered_count
∀s:QOSet. ∀as:|s| List.  ((↑sd_ordered(as)) 
⇒ (∀c:|s|. ((c #∈ as) ≤ 1)))
Proof
Definitions occuring in Statement : 
sd_ordered: sd_ordered(as)
, 
count: a #∈ as
, 
list: T List
, 
assert: ↑b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
qoset: QOSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qoset: QOSet
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
band_mon: <𝔹,∧b>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
abmonoid: AbMon
, 
mon: Mon
, 
b2i: b2i(b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
list_induction, 
set_car_wf, 
assert_wf, 
sd_ordered_wf, 
all_wf, 
le_wf, 
count_wf, 
list_wf, 
le_weakening2, 
nil_wf, 
length_nil, 
non_neg_length, 
count_bounds, 
length_of_nil_lemma, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
count_nil_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
assert_functionality_wrt_uiff, 
cons_wf, 
mon_htfor_wf, 
band_mon_wf, 
ball_wf, 
set_blt_wf, 
bool_wf, 
sd_ordered_char, 
mon_htfor_cons_lemma, 
assert_of_band, 
grp_car_wf, 
abmonoid_wf, 
qoset_wf, 
count_cons_lemma, 
set_eq_wf, 
uiff_transitivity, 
equal-wf-T-base, 
equal_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
dset_wf, 
iff_weakening_equal, 
before_all_imp_count_zero, 
decidable__le, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
hypothesisEquality, 
natural_numberEquality, 
independent_functionElimination, 
independent_isectElimination, 
voidEquality, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
computeAll, 
applyEquality, 
equalityElimination, 
baseClosed, 
impliesFunctionality, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
addEquality
Latex:
\mforall{}s:QOSet.  \mforall{}as:|s|  List.    ((\muparrow{}sd\_ordered(as))  {}\mRightarrow{}  (\mforall{}c:|s|.  ((c  \#\mmember{}  as)  \mleq{}  1)))
Date html generated:
2017_10_01-AM-10_01_36
Last ObjectModification:
2017_03_03-PM-01_04_04
Theory : polynom_2
Home
Index