Nuprl Lemma : before_all_imp_count_zero
∀s:QOSet. ∀a:|s|. ∀cs:|s| List.  ((↑(∀bc(:|s|) ∈ cs. (c <b a))) ⇒ ((a #∈ cs) = 0 ∈ ℤ))
Proof
Definitions occuring in Statement : 
count: a #∈ as, 
ball: ball, 
list: T List, 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T, 
qoset: QOSet, 
set_blt: a <b b, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
qoset: QOSet, 
dset: DSet, 
so_apply: x[s], 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
and: P ∧ Q, 
ball: ball, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
rev_implies: P ⇐ Q, 
b2i: b2i(b), 
infix_ap: x f y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff, 
not: ¬A, 
false: False, 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x]
Lemmas referenced : 
list_induction, 
assert_wf, 
ball_wf, 
set_car_wf, 
set_blt_wf, 
equal-wf-T-base, 
count_wf, 
list_wf, 
ball_nil_lemma, 
count_nil_lemma, 
true_wf, 
ball_cons_lemma, 
count_cons_lemma, 
band_wf, 
qoset_wf, 
iff_transitivity, 
set_lt_wf, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_set_lt, 
set_eq_wf, 
bool_wf, 
uiff_transitivity, 
equal_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
set_lt_transitivity_2, 
set_leq_weakening_eq, 
set_lt_irreflexivity, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
hypothesis, 
hypothesisEquality, 
intEquality, 
baseClosed, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
productEquality, 
independent_pairFormation, 
productElimination, 
independent_isectElimination, 
applyEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
impliesFunctionality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll
Latex:
\mforall{}s:QOSet.  \mforall{}a:|s|.  \mforall{}cs:|s|  List.    ((\muparrow{}(\mforall{}\msubb{}c(:|s|)  \mmember{}  cs.  (c  <\msubb{}  a)))  {}\mRightarrow{}  ((a  \#\mmember{}  cs)  =  0))
Date html generated:
2017_10_01-AM-10_01_34
Last ObjectModification:
2017_03_03-PM-01_03_44
Theory : polynom_2
Home
Index