Nuprl Lemma : before_all_imp_count_zero

s:QOSet. ∀a:|s|. ∀cs:|s| List.  ((↑(∀bc(:|s|) ∈ cs. (c <b a)))  ((a #∈ cs) 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  count: #∈ as ball: ball list: List assert: b all: x:A. B[x] implies:  Q natural_number: $n int: equal: t ∈ T qoset: QOSet set_blt: a <b b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: qoset: QOSet dset: DSet so_apply: x[s] top: Top assert: b ifthenelse: if then else fi  btrue: tt and: P ∧ Q ball: ball iff: ⇐⇒ Q uiff: uiff(P;Q) uimplies: supposing a rev_implies:  Q b2i: b2i(b) infix_ap: y bool: 𝔹 unit: Unit it: bfalse: ff not: ¬A false: False guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  list_induction assert_wf ball_wf set_car_wf set_blt_wf equal-wf-T-base count_wf list_wf ball_nil_lemma count_nil_lemma true_wf ball_cons_lemma count_cons_lemma band_wf qoset_wf iff_transitivity set_lt_wf iff_weakening_uiff assert_of_band assert_of_set_lt set_eq_wf bool_wf uiff_transitivity equal_wf eqtt_to_assert assert_of_dset_eq bnot_wf not_wf eqff_to_assert assert_of_bnot set_lt_transitivity_2 set_leq_weakening_eq set_lt_irreflexivity decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality functionEquality dependent_functionElimination setElimination rename hypothesis hypothesisEquality intEquality baseClosed independent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality productEquality independent_pairFormation productElimination independent_isectElimination applyEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry impliesFunctionality dependent_pairFormation int_eqEquality computeAll

Latex:
\mforall{}s:QOSet.  \mforall{}a:|s|.  \mforall{}cs:|s|  List.    ((\muparrow{}(\mforall{}\msubb{}c(:|s|)  \mmember{}  cs.  (c  <\msubb{}  a)))  {}\mRightarrow{}  ((a  \#\mmember{}  cs)  =  0))



Date html generated: 2017_10_01-AM-10_01_34
Last ObjectModification: 2017_03_03-PM-01_03_44

Theory : polynom_2


Home Index