Nuprl Lemma : fset_mem_union

s:DSet. ∀as,bs:MSet{s}. ∀c:|s|.  c ∈b as ⋃ bs (c ∈b as) ∨b(c ∈b bs)


Proof




Definitions occuring in Statement :  mset_union: a ⋃ b mset_mem: mset_mem mset: MSet{s} bor: p ∨bq bool: 𝔹 all: x:A. B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet mk_mset: mk_mset(as) mset_union: a ⋃ b mset_mem: mset_mem so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  mem_lmax set_car_wf list_wf all_mset_elim all_wf equal_wf bool_wf mset_mem_wf mset_union_wf mk_mset_wf bor_wf mset_wf sq_stable__all sq_stable__equal mem_wf lmax_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination setElimination rename addLevel sqequalRule allFunctionality lambdaEquality because_Cache independent_functionElimination productElimination levelHypothesis allLevelFunctionality

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:MSet\{s\}.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  as  \mcup{}  bs  =  (c  \mmember{}\msubb{}  as)  \mvee{}\msubb{}(c  \mmember{}\msubb{}  bs)



Date html generated: 2018_05_22-AM-07_45_52
Last ObjectModification: 2018_05_19-AM-08_30_59

Theory : mset


Home Index