Nuprl Lemma : mem_lmax

s:DSet. ∀as,bs:|s| List. ∀c:|s|.  c ∈b lmax(s;as;bs) (c ∈b as) ∨b(c ∈b bs)


Proof




Definitions occuring in Statement :  lmax: lmax(s;as;bs) mem: a ∈b as list: List bor: p ∨bq bool: 𝔹 all: x:A. B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] prop: gt: i > j or: P ∨ Q dset: DSet uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q decidable: Dec(P) less_than: a < b squash: T not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top le: A ≤ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} true: True subtype_rel: A ⊆B
Lemmas referenced :  mem_wf lmax_wf bor_wf assert_wf gt_wf count_wf or_wf set_car_wf list_wf dset_wf iff_imp_equal_bool mem_iff_count_nzero iff_weakening_uiff assert_of_bor le_int_wf equal-wf-T-base bool_wf le_wf decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf intformle_wf int_formula_prop_le_lemma lt_int_wf less_than_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int imax_unfold iff_weakening_equal imax_wf squash_wf true_wf count_lmax subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination because_Cache universeIsType natural_numberEquality sqequalRule unionIsType setElimination rename inhabitedIsType lambdaFormation_alt independent_isectElimination productElimination independent_functionElimination unionElimination inlFormation_alt inrFormation_alt independent_pairFormation promote_hyp equalityTransitivity equalitySymmetry baseClosed imageElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination equalityElimination equalityIsType1 applyEquality imageMemberEquality instantiate universeEquality

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  lmax(s;as;bs)  =  (c  \mmember{}\msubb{}  as)  \mvee{}\msubb{}(c  \mmember{}\msubb{}  bs)



Date html generated: 2019_10_16-PM-01_04_47
Last ObjectModification: 2018_10_08-AM-10_14_55

Theory : list_2


Home Index