Nuprl Lemma : count_lmax

s:DSet. ∀as,bs:|s| List. ∀c:|s|.  ((c #∈ lmax(s;as;bs)) imax(c #∈ as;c #∈ bs) ∈ ℤ)


Proof




Definitions occuring in Statement :  lmax: lmax(s;as;bs) count: #∈ as list: List imax: imax(a;b) all: x:A. B[x] int: equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] lmax: lmax(s;as;bs) member: t ∈ T uall: [x:A]. B[x] dset: DSet true: True squash: T prop: subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  set_car_wf list_wf dset_wf diff_wf imax_wf count_wf ndiff_wf equal_wf squash_wf true_wf istype-universe count_append subtype_rel_self add_functionality_wrt_eq count_diff iff_weakening_equal ndiff_add_eq_imax
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality inhabitedIsType intEquality dependent_functionElimination natural_numberEquality because_Cache applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.  \mforall{}c:|s|.    ((c  \#\mmember{}  lmax(s;as;bs))  =  imax(c  \#\mmember{}  as;c  \#\mmember{}  bs))



Date html generated: 2019_10_16-PM-01_04_43
Last ObjectModification: 2018_10_08-AM-10_14_52

Theory : list_2


Home Index