Nuprl Lemma : count_diff
∀s:DSet. ∀as,bs:|s| List. ∀c:|s|.  ((c #∈ (as - bs)) = ((c #∈ as) -- (c #∈ bs)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
diff: as - bs
, 
count: a #∈ as
, 
ndiff: a -- b
, 
list: T List
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
top: Top
, 
nat: ℕ
, 
and: P ∧ Q
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
Lemmas referenced : 
list_induction, 
set_car_wf, 
all_wf, 
list_wf, 
equal_wf, 
count_wf, 
diff_wf, 
ndiff_wf, 
dset_wf, 
diff_nil_lemma, 
count_nil_lemma, 
count_bounds, 
le_wf, 
squash_wf, 
true_wf, 
ndiff_id_r, 
iff_weakening_equal, 
diff_cons_lemma, 
count_cons_lemma, 
remove1_wf, 
b2i_wf, 
infix_ap_wf, 
bool_wf, 
set_eq_wf, 
ndiff_ndiff, 
count_remove1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
intEquality, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
productElimination, 
natural_numberEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
addEquality
Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.  \mforall{}c:|s|.    ((c  \#\mmember{}  (as  -  bs))  =  ((c  \#\mmember{}  as)  --  (c  \#\mmember{}  bs)))
Date html generated:
2017_10_01-AM-09_56_39
Last ObjectModification:
2017_03_03-PM-00_57_44
Theory : list_2
Home
Index