Nuprl Lemma : count_diff

s:DSet. ∀as,bs:|s| List. ∀c:|s|.  ((c #∈ (as bs)) ((c #∈ as) -- (c #∈ bs)) ∈ ℤ)


Proof




Definitions occuring in Statement :  diff: as bs count: #∈ as ndiff: -- b list: List all: x:A. B[x] int: equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T dset: DSet so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: top: Top nat: and: P ∧ Q true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q infix_ap: y
Lemmas referenced :  list_induction set_car_wf all_wf list_wf equal_wf count_wf diff_wf ndiff_wf dset_wf diff_nil_lemma count_nil_lemma count_bounds le_wf squash_wf true_wf ndiff_id_r iff_weakening_equal diff_cons_lemma count_cons_lemma remove1_wf b2i_wf infix_ap_wf bool_wf set_eq_wf ndiff_ndiff count_remove1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename because_Cache hypothesis sqequalRule lambdaEquality intEquality dependent_functionElimination hypothesisEquality independent_functionElimination isect_memberEquality voidElimination voidEquality dependent_set_memberEquality productElimination natural_numberEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination addEquality

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.  \mforall{}c:|s|.    ((c  \#\mmember{}  (as  -  bs))  =  ((c  \#\mmember{}  as)  --  (c  \#\mmember{}  bs)))



Date html generated: 2017_10_01-AM-09_56_39
Last ObjectModification: 2017_03_03-PM-00_57_44

Theory : list_2


Home Index