Nuprl Lemma : diff_cons_lemma

bs,b,as,s:Top.  (as [b bs] (as b) bs)


Proof




Definitions occuring in Statement :  diff: as bs remove1: as a cons: [a b] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] diff: as bs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
\mforall{}bs,b,as,s:Top.    (as  -  [b  /  bs]  \msim{}  (as  \mbackslash{}  b)  -  bs)



Date html generated: 2016_05_16-AM-07_40_07
Last ObjectModification: 2015_12_28-PM-05_43_20

Theory : list_2


Home Index