Nuprl Lemma : diff_cons_lemma
∀bs,b,as,s:Top.  (as - [b / bs] ~ (as \ b) - bs)
Proof
Definitions occuring in Statement : 
diff: as - bs
, 
remove1: as \ a
, 
cons: [a / b]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
diff: as - bs
, 
ycomb: Y
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_cons_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis
Latex:
\mforall{}bs,b,as,s:Top.    (as  -  [b  /  bs]  \msim{}  (as  \mbackslash{}  b)  -  bs)
Date html generated:
2016_05_16-AM-07_40_07
Last ObjectModification:
2015_12_28-PM-05_43_20
Theory : list_2
Home
Index