Nuprl Lemma : count_remove1
∀s:DSet. ∀as:|s| List. ∀b,c:|s|.  ((c #∈ (as \ b)) = ((c #∈ as) -- b2i(b (=b) c)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
count: a #∈ as
, 
remove1: as \ a
, 
ndiff: a -- b
, 
list: T List
, 
b2i: b2i(b)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_eq: =b
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
dset: DSet
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
infix_ap: x f y
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
b2i: b2i(b)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
set_car_wf, 
list-cases, 
remove1_nil_lemma, 
count_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
remove1_cons_lemma, 
count_cons_lemma, 
nat_wf, 
list_wf, 
dset_wf, 
ndiff_ann_l, 
b2i_wf, 
set_eq_wf, 
b2i_bounds, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
equal_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_dset_eq, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
count_wf, 
count_bounds, 
istype-universe, 
ndiff_inv, 
iff_weakening_equal, 
ndiff_wf, 
add_com, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
subtype_rel_self, 
equal-wf-base, 
infix_ap_wf, 
le_weakening2, 
non_neg_length, 
remove1_wf, 
decidable__lt, 
ndiff_id_r, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityIsType1, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
equalityElimination, 
universeEquality, 
imageMemberEquality, 
hyp_replacement, 
addEquality
Latex:
\mforall{}s:DSet.  \mforall{}as:|s|  List.  \mforall{}b,c:|s|.    ((c  \#\mmember{}  (as  \mbackslash{}  b))  =  ((c  \#\mmember{}  as)  --  b2i(b  (=\msubb{})  c)))
Date html generated:
2019_10_16-PM-01_04_16
Last ObjectModification:
2018_10_08-AM-11_19_46
Theory : list_2
Home
Index