Nuprl Lemma : count_remove1

s:DSet. ∀as:|s| List. ∀b,c:|s|.  ((c #∈ (as b)) ((c #∈ as) -- b2i(b (=bc)) ∈ ℤ)


Proof




Definitions occuring in Statement :  count: #∈ as remove1: as a ndiff: -- b list: List b2i: b2i(b) infix_ap: y all: x:A. B[x] int: equal: t ∈ T dset: DSet set_eq: =b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: dset: DSet or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B infix_ap: y bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q true: True b2i: b2i(b)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf set_car_wf list-cases remove1_nil_lemma count_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le remove1_cons_lemma count_cons_lemma nat_wf list_wf dset_wf ndiff_ann_l b2i_wf set_eq_wf b2i_bounds equal-wf-T-base bool_wf assert_wf equal_wf bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_dset_eq iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot count_wf count_bounds istype-universe ndiff_inv iff_weakening_equal ndiff_wf add_com squash_wf true_wf add_functionality_wrt_eq subtype_rel_self equal-wf-base infix_ap_wf le_weakening2 non_neg_length remove1_wf decidable__lt ndiff_id_r zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityIsType1 dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination equalityIsType4 baseApply closedConclusion baseClosed applyEquality intEquality equalityElimination universeEquality imageMemberEquality hyp_replacement addEquality

Latex:
\mforall{}s:DSet.  \mforall{}as:|s|  List.  \mforall{}b,c:|s|.    ((c  \#\mmember{}  (as  \mbackslash{}  b))  =  ((c  \#\mmember{}  as)  --  b2i(b  (=\msubb{})  c)))



Date html generated: 2019_10_16-PM-01_04_16
Last ObjectModification: 2018_10_08-AM-11_19_46

Theory : list_2


Home Index