Nuprl Lemma : add_com

[a,b:ℤ].  ((a b) (b a) ∈ ℤ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B top: Top
Lemmas referenced :  add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality intEquality hypothesis addEquality axiomEquality because_Cache

Latex:
\mforall{}[a,b:\mBbbZ{}].    ((a  +  b)  =  (b  +  a))



Date html generated: 2016_05_13-PM-03_39_35
Last ObjectModification: 2015_12_26-AM-09_40_43

Theory : arithmetic


Home Index