Nuprl Lemma : ndiff_wf
∀[a,b:ℤ].  (a -- b ∈ ℤ)
Proof
Definitions occuring in Statement : 
ndiff: a -- b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ndiff: a -- b
Lemmas referenced : 
imax_wf, 
subtract_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
intEquality, 
Error :universeIsType
Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  --  b  \mmember{}  \mBbbZ{})
Date html generated:
2019_06_20-PM-01_13_54
Last ObjectModification:
2018_09_26-PM-02_32_19
Theory : int_2
Home
Index