Nuprl Lemma : diff_nil_lemma

as,s:Top.  (as [] as)


Proof




Definitions occuring in Statement :  diff: as bs nil: [] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T diff: as bs ycomb: Y so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}as,s:Top.    (as  -  []  \msim{}  as)



Date html generated: 2016_05_16-AM-07_40_05
Last ObjectModification: 2015_12_28-PM-05_43_03

Theory : list_2


Home Index