Nuprl Lemma : count_append
∀s:DSet. ∀as,bs:|s| List. ∀c:|s|.  ((c #∈ (as @ bs)) = ((c #∈ as) + (c #∈ bs)) ∈ ℤ)
Proof
Definitions occuring in Statement : 
count: a #∈ as, 
append: as @ bs, 
list: T List, 
all: ∀x:A. B[x], 
add: n + m, 
int: ℤ, 
equal: s = t ∈ T, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dset: DSet, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
infix_ap: x f y
Lemmas referenced : 
list_induction, 
set_car_wf, 
equal_wf, 
count_wf, 
append_wf, 
list_wf, 
list_ind_nil_lemma, 
count_nil_lemma, 
list_ind_cons_lemma, 
count_cons_lemma, 
dset_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
add-is-int-iff, 
b2i_wf, 
infix_ap_wf, 
bool_wf, 
set_eq_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
intEquality, 
dependent_functionElimination, 
hypothesisEquality, 
addEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
applyEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.  \mforall{}c:|s|.    ((c  \#\mmember{}  (as  @  bs))  =  ((c  \#\mmember{}  as)  +  (c  \#\mmember{}  bs)))
Date html generated:
2017_01_09-AM-08_37_30
Last ObjectModification:
2016_07_12-PM-01_12_32
Theory : list_2
Home
Index