Nuprl Lemma : mset_mem_diff

s:DSet. ∀as:FiniteSet{s}. ∀bs:MSet{s}. ∀c:|s|.  c ∈b as bs (c ∈b as) ∧b b(c ∈b bs))


Proof




Definitions occuring in Statement :  mset_diff: b mset_mem: mset_mem finite_set: FiniteSet{s} mset: MSet{s} band: p ∧b q bnot: ¬bb bool: 𝔹 all: x:A. B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet mk_mset: mk_mset(as) mset_diff: b mset_mem: mset_mem so_lambda: λ2x.t[x] dislist: DisList{s} so_apply: x[s] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q finite_set: FiniteSet{s} prop: bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff
Lemmas referenced :  set_car_wf list_wf dislist_wf all_mset_elim all_wf equal_wf bool_wf mset_mem_wf mset_diff_wf mk_mset_wf band_wf bnot_wf mset_wf sq_stable__all sq_stable__equal all_fset_elim finite_set_wf mem_wf diff_wf eqtt_to_assert dset_wf mem_diff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality dependent_functionElimination addLevel sqequalRule allFunctionality lambdaEquality because_Cache independent_functionElimination productElimination levelHypothesis allLevelFunctionality unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}s:DSet.  \mforall{}as:FiniteSet\{s\}.  \mforall{}bs:MSet\{s\}.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  as  -  bs  =  (c  \mmember{}\msubb{}  as)  \mwedge{}\msubb{}  (\mneg{}\msubb{}(c  \mmember{}\msubb{}  bs))



Date html generated: 2017_10_01-AM-10_00_09
Last ObjectModification: 2017_03_03-PM-01_01_42

Theory : mset


Home Index