Nuprl Lemma : mset_mem_diff
∀s:DSet. ∀as:FiniteSet{s}. ∀bs:MSet{s}. ∀c:|s|.  c ∈b as - bs = (c ∈b as) ∧b (¬b(c ∈b bs))
Proof
Definitions occuring in Statement : 
mset_diff: a - b
, 
mset_mem: mset_mem, 
finite_set: FiniteSet{s}
, 
mset: MSet{s}
, 
band: p ∧b q
, 
bnot: ¬bb
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
mk_mset: mk_mset(as)
, 
mset_diff: a - b
, 
mset_mem: mset_mem, 
so_lambda: λ2x.t[x]
, 
dislist: DisList{s}
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
finite_set: FiniteSet{s}
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bfalse: ff
Lemmas referenced : 
set_car_wf, 
list_wf, 
dislist_wf, 
all_mset_elim, 
all_wf, 
equal_wf, 
bool_wf, 
mset_mem_wf, 
mset_diff_wf, 
mk_mset_wf, 
band_wf, 
bnot_wf, 
mset_wf, 
sq_stable__all, 
sq_stable__equal, 
all_fset_elim, 
finite_set_wf, 
mem_wf, 
diff_wf, 
eqtt_to_assert, 
dset_wf, 
mem_diff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_functionElimination, 
addLevel, 
sqequalRule, 
allFunctionality, 
lambdaEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
levelHypothesis, 
allLevelFunctionality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}s:DSet.  \mforall{}as:FiniteSet\{s\}.  \mforall{}bs:MSet\{s\}.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  as  -  bs  =  (c  \mmember{}\msubb{}  as)  \mwedge{}\msubb{}  (\mneg{}\msubb{}(c  \mmember{}\msubb{}  bs))
Date html generated:
2017_10_01-AM-10_00_09
Last ObjectModification:
2017_03_03-PM-01_01_42
Theory : mset
Home
Index