Nuprl Lemma : mem_diff
∀s:DSet. ∀as:DisList{s}. ∀bs:|s| List. ∀c:|s|. c ∈b (as - bs) = (c ∈b as) ∧b (¬b(c ∈b bs))
Proof
Definitions occuring in Statement :
diff: as - bs
,
dislist: DisList{s}
,
mem: a ∈b as
,
list: T List
,
band: p ∧b q
,
bnot: ¬bb
,
bool: 𝔹
,
all: ∀x:A. B[x]
,
equal: s = t ∈ T
,
dset: DSet
,
set_car: |p|
Definitions unfolded in proof :
member: t ∈ T
,
all: ∀x:A. B[x]
,
dislist: DisList{s}
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uall: ∀[x:A]. B[x]
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
not: ¬A
,
prop: ℙ
,
gt: i > j
,
dset: DSet
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
ndiff: a -- b
,
less_than: a < b
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
ge: i ≥ j
,
decidable: Dec(P)
Lemmas referenced :
mem_wf,
diff_wf,
eqtt_to_assert,
bnot_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
bfalse_wf,
mem_iff_count_nzero,
assert_wf,
gt_wf,
count_wf,
not_wf,
set_car_wf,
list_wf,
dislist_wf,
dset_wf,
iff_imp_equal_bool,
iff_transitivity,
iff_weakening_uiff,
assert_of_band,
assert_of_bnot,
dislist_properties,
squash_wf,
true_wf,
istype-int,
count_diff,
subtype_rel_self,
iff_weakening_equal,
le_int_wf,
subtract_wf,
assert_of_le_int,
subtract-is-int-iff,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
intformle_wf,
itermSubtract_wf,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_le_lemma,
int_term_value_subtract_lemma,
int_formula_prop_wf,
false_wf,
le_wf,
non_neg_length,
count_bounds,
decidable__lt,
imax_unfold,
imax_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
setElimination,
rename,
hypothesis,
because_Cache,
inhabitedIsType,
lambdaFormation_alt,
unionElimination,
equalityElimination,
isectElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
independent_isectElimination,
sqequalRule,
dependent_pairFormation_alt,
equalityIsType1,
promote_hyp,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
independent_pairFormation,
universeIsType,
natural_numberEquality,
productIsType,
productEquality,
isect_memberEquality_alt,
applyEquality,
lambdaEquality_alt,
imageElimination,
imageMemberEquality,
baseClosed,
universeEquality,
pointwiseFunctionality,
baseApply,
closedConclusion,
approximateComputation,
int_eqEquality
Latex:
\mforall{}s:DSet. \mforall{}as:DisList\{s\}. \mforall{}bs:|s| List. \mforall{}c:|s|. c \mmember{}\msubb{} (as - bs) = (c \mmember{}\msubb{} as) \mwedge{}\msubb{} (\mneg{}\msubb{}(c \mmember{}\msubb{} bs))
Date html generated:
2019_10_16-PM-01_04_20
Last ObjectModification:
2018_10_08-AM-11_17_19
Theory : list_2
Home
Index