Nuprl Lemma : mem_diff
∀s:DSet. ∀as:DisList{s}. ∀bs:|s| List. ∀c:|s|.  c ∈b (as - bs) = (c ∈b as) ∧b (¬b(c ∈b bs))
Proof
Definitions occuring in Statement : 
diff: as - bs
, 
dislist: DisList{s}
, 
mem: a ∈b as
, 
list: T List
, 
band: p ∧b q
, 
bnot: ¬bb
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
dislist: DisList{s}
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
prop: ℙ
, 
gt: i > j
, 
dset: DSet
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
ndiff: a -- b
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
Lemmas referenced : 
mem_wf, 
diff_wf, 
eqtt_to_assert, 
bnot_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
mem_iff_count_nzero, 
assert_wf, 
gt_wf, 
count_wf, 
not_wf, 
set_car_wf, 
list_wf, 
dislist_wf, 
dset_wf, 
iff_imp_equal_bool, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_bnot, 
dislist_properties, 
squash_wf, 
true_wf, 
istype-int, 
count_diff, 
subtype_rel_self, 
iff_weakening_equal, 
le_int_wf, 
subtract_wf, 
assert_of_le_int, 
subtract-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_wf, 
false_wf, 
le_wf, 
non_neg_length, 
count_bounds, 
decidable__lt, 
imax_unfold, 
imax_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation_alt, 
equalityIsType1, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
natural_numberEquality, 
productIsType, 
productEquality, 
isect_memberEquality_alt, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
approximateComputation, 
int_eqEquality
Latex:
\mforall{}s:DSet.  \mforall{}as:DisList\{s\}.  \mforall{}bs:|s|  List.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  (as  -  bs)  =  (c  \mmember{}\msubb{}  as)  \mwedge{}\msubb{}  (\mneg{}\msubb{}(c  \mmember{}\msubb{}  bs))
Date html generated:
2019_10_16-PM-01_04_20
Last ObjectModification:
2018_10_08-AM-11_17_19
Theory : list_2
Home
Index