Nuprl Lemma : mem_diff

s:DSet. ∀as:DisList{s}. ∀bs:|s| List. ∀c:|s|.  c ∈b (as bs) (c ∈b as) ∧b b(c ∈b bs))


Proof




Definitions occuring in Statement :  diff: as bs dislist: DisList{s} mem: a ∈b as list: List band: p ∧b q bnot: ¬bb bool: 𝔹 all: x:A. B[x] equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] dislist: DisList{s} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a band: p ∧b q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False iff: ⇐⇒ Q rev_implies:  Q not: ¬A prop: gt: i > j dset: DSet squash: T true: True subtype_rel: A ⊆B ndiff: -- b less_than: a < b less_than': less_than'(a;b) le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top ge: i ≥  decidable: Dec(P)
Lemmas referenced :  mem_wf diff_wf eqtt_to_assert bnot_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot bfalse_wf mem_iff_count_nzero assert_wf gt_wf count_wf not_wf set_car_wf list_wf dislist_wf dset_wf iff_imp_equal_bool iff_transitivity iff_weakening_uiff assert_of_band assert_of_bnot dislist_properties squash_wf true_wf istype-int count_diff subtype_rel_self iff_weakening_equal le_int_wf subtract_wf assert_of_le_int subtract-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf itermSubtract_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_formula_prop_wf false_wf le_wf non_neg_length count_bounds decidable__lt imax_unfold imax_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename hypothesis because_Cache inhabitedIsType lambdaFormation_alt unionElimination equalityElimination isectElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation_alt equalityIsType1 promote_hyp instantiate cumulativity independent_functionElimination voidElimination independent_pairFormation universeIsType natural_numberEquality productIsType productEquality isect_memberEquality_alt applyEquality lambdaEquality_alt imageElimination imageMemberEquality baseClosed universeEquality pointwiseFunctionality baseApply closedConclusion approximateComputation int_eqEquality

Latex:
\mforall{}s:DSet.  \mforall{}as:DisList\{s\}.  \mforall{}bs:|s|  List.  \mforall{}c:|s|.    c  \mmember{}\msubb{}  (as  -  bs)  =  (c  \mmember{}\msubb{}  as)  \mwedge{}\msubb{}  (\mneg{}\msubb{}(c  \mmember{}\msubb{}  bs))



Date html generated: 2019_10_16-PM-01_04_20
Last ObjectModification: 2018_10_08-AM-11_17_19

Theory : list_2


Home Index