Nuprl Lemma : dislist_wf
∀s:DSet. (DisList{s} ∈ Type)
Proof
Definitions occuring in Statement : 
dislist: DisList{s}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
dislist: DisList{s}
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
list_wf, 
set_car_wf, 
all_wf, 
le_wf, 
count_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
setEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality_alt, 
dependent_functionElimination, 
hypothesisEquality, 
natural_numberEquality, 
universeIsType
Latex:
\mforall{}s:DSet.  (DisList\{s\}  \mmember{}  Type)
Date html generated:
2019_10_16-PM-01_04_08
Last ObjectModification:
2018_10_08-AM-11_03_20
Theory : list_2
Home
Index