Nuprl Lemma : dislist_wf

s:DSet. (DisList{s} ∈ Type)


Proof




Definitions occuring in Statement :  dislist: DisList{s} all: x:A. B[x] member: t ∈ T universe: Type dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T dislist: DisList{s} uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  list_wf set_car_wf all_wf le_wf count_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule setEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis lambdaEquality_alt dependent_functionElimination hypothesisEquality natural_numberEquality universeIsType

Latex:
\mforall{}s:DSet.  (DisList\{s\}  \mmember{}  Type)



Date html generated: 2019_10_16-PM-01_04_08
Last ObjectModification: 2018_10_08-AM-11_03_20

Theory : list_2


Home Index