Nuprl Lemma : dislist_wf
∀s:DSet. (DisList{s} ∈ Type)
Proof
Definitions occuring in Statement :
dislist: DisList{s}
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
universe: Type
,
dset: DSet
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
dislist: DisList{s}
,
uall: ∀[x:A]. B[x]
,
dset: DSet
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
Lemmas referenced :
list_wf,
set_car_wf,
all_wf,
le_wf,
count_wf,
dset_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
sqequalRule,
setEquality,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
because_Cache,
hypothesis,
lambdaEquality_alt,
dependent_functionElimination,
hypothesisEquality,
natural_numberEquality,
universeIsType
Latex:
\mforall{}s:DSet. (DisList\{s\} \mmember{} Type)
Date html generated:
2019_10_16-PM-01_04_08
Last ObjectModification:
2018_10_08-AM-11_03_20
Theory : list_2
Home
Index