Nuprl Lemma : all_fset_elim

s:DSet. ∀F:MSet{s} ⟶ ℙ.
  ((∀a:FiniteSet{s}. SqStable(F[a]))  (∀a:FiniteSet{s}. F[a] ⇐⇒ ∀a:DisList{s}. F[mk_mset(a)]))


Proof




Definitions occuring in Statement :  finite_set: FiniteSet{s} mk_mset: mk_mset(as) mset: MSet{s} dislist: DisList{s} sq_stable: SqStable(P) prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] finite_set: FiniteSet{s} rev_implies:  Q dislist: DisList{s} sq_stable: SqStable(P) dset: DSet subtype_rel: A ⊆B nat: squash: T mset: MSet{s} quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a mk_mset: mk_mset(as) mset_count: #∈ a
Lemmas referenced :  dislist_wf all_wf finite_set_wf mset_wf mk_mset_wf sq_stable_wf dset_wf mk_mset_wf2 sq_stable__all set_car_wf le_wf mset_count_wf nat_wf squash_wf sq_stable__squash list_wf subtype_quotient permr_wf permr_equiv_rel equal_wf equal-wf-base count_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination sqequalRule lambdaEquality applyEquality functionExtensionality setElimination rename functionEquality cumulativity universeEquality independent_functionElimination natural_numberEquality because_Cache imageElimination imageMemberEquality baseClosed pointwiseFunctionalityForEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry independent_isectElimination productEquality dependent_set_memberEquality

Latex:
\mforall{}s:DSet.  \mforall{}F:MSet\{s\}  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}a:FiniteSet\{s\}.  SqStable(F[a]))  {}\mRightarrow{}  (\mforall{}a:FiniteSet\{s\}.  F[a]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}a:DisList\{s\}.  F[mk\_mset(a)]))



Date html generated: 2017_10_01-AM-09_59_03
Last ObjectModification: 2017_03_03-PM-01_00_18

Theory : mset


Home Index