Nuprl Lemma : mk_mset_wf2

s:DSet. ∀as:DisList{s}.  (mk_mset(as) ∈ FiniteSet{s})


Proof




Definitions occuring in Statement :  finite_set: FiniteSet{s} mk_mset: mk_mset(as) dislist: DisList{s} all: x:A. B[x] member: t ∈ T dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T guard: {T} finite_set: FiniteSet{s} dislist: DisList{s} uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] prop: mk_mset: mk_mset(as) mset_count: #∈ a
Lemmas referenced :  dislist_properties mk_mset_wf set_car_wf all_wf le_wf mset_count_wf nat_wf dislist_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis dependent_set_memberEquality setElimination rename isectElimination sqequalRule lambdaEquality applyEquality natural_numberEquality

Latex:
\mforall{}s:DSet.  \mforall{}as:DisList\{s\}.    (mk\_mset(as)  \mmember{}  FiniteSet\{s\})



Date html generated: 2016_05_16-AM-07_46_31
Last ObjectModification: 2015_12_28-PM-06_03_56

Theory : mset


Home Index