Nuprl Lemma : mset_diff_wf

s:DSet. ∀a,b:MSet{s}.  (a b ∈ MSet{s})


Proof




Definitions occuring in Statement :  mset_diff: b mset: MSet{s} all: x:A. B[x] member: t ∈ T dset: DSet
Definitions unfolded in proof :  mset_diff: b all: x:A. B[x] member: t ∈ T mset: MSet{s} quotient: x,y:A//B[x; y] and: P ∧ Q uall: [x:A]. B[x] dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a implies:  Q prop:
Lemmas referenced :  quotient-member-eq list_wf set_car_wf permr_wf permr_equiv_rel diff_wf equal-wf-base mset_wf dset_wf diff_functionality_wrt_permr
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache pertypeElimination productElimination thin lemma_by_obid isectElimination setElimination rename hypothesisEquality hypothesis lambdaEquality dependent_functionElimination independent_isectElimination independent_functionElimination productEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}s:DSet.  \mforall{}a,b:MSet\{s\}.    (a  -  b  \mmember{}  MSet\{s\})



Date html generated: 2016_05_16-AM-07_49_01
Last ObjectModification: 2015_12_28-PM-06_02_23

Theory : mset


Home Index