Nuprl Lemma : oal_dom_inj
∀a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀v:|b|.  (dom(inj(k,v)) = if v =b e then 0{a} else mset_inj{a}(k) fi  ∈ FiniteSet{a})
Proof
Definitions occuring in Statement : 
oal_inj: inj(k,v), 
oal_dom: dom(ps), 
mset_inj: mset_inj{s}(x), 
finite_set: FiniteSet{s}, 
null_mset: 0{s}, 
ifthenelse: if b then t else f fi , 
infix_ap: x f y, 
all: ∀x:A. B[x], 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
grp_id: e, 
grp_eq: =b, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
dset: DSet, 
finite_set: FiniteSet{s}, 
oal_inj: inj(k,v), 
infix_ap: x f y, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
false: False, 
guard: {T}, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_apply: x[s], 
null_mset: 0{s}, 
oal_dom: dom(ps), 
mk_mset: mk_mset(as), 
top: Top, 
mset_inj: mset_inj{s}(x), 
mset_sum: a + b, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
pi1: fst(t), 
squash: ↓T, 
true: True
Lemmas referenced : 
grp_car_wf, 
set_car_wf, 
abdmonoid_wf, 
loset_wf, 
oal_dom_wf2, 
oal_inj_wf, 
grp_eq_wf, 
grp_id_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
equal_wf, 
eqtt_to_assert, 
assert_of_mon_eq, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
fset_properties, 
all_wf, 
le_wf, 
mset_count_wf, 
nat_wf, 
map_nil_lemma, 
null_mset_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
map_cons_lemma, 
squash_wf, 
true_wf, 
mset_wf, 
mset_sum_ident_r, 
mset_inj_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
applyEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
impliesFunctionality, 
voidElimination, 
lambdaEquality, 
natural_numberEquality, 
isect_memberEquality, 
voidEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}v:|b|.    (dom(inj(k,v))  =  if  v  =\msubb{}  e  then  0\{a\}  else  mset\_inj\{a\}(k)  fi  )
Date html generated:
2017_10_01-AM-10_03_03
Last ObjectModification:
2017_03_03-PM-01_05_35
Theory : polynom_2
Home
Index