Nuprl Lemma : oal_dom_inj

a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀v:|b|.  (dom(inj(k,v)) if =b then 0{a} else mset_inj{a}(k) fi  ∈ FiniteSet{a})


Proof




Definitions occuring in Statement :  oal_inj: inj(k,v) oal_dom: dom(ps) mset_inj: mset_inj{s}(x) finite_set: FiniteSet{s} null_mset: 0{s} ifthenelse: if then else fi  infix_ap: y all: x:A. B[x] equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_eq: =b grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] abdmonoid: AbDMon dmon: DMon mon: Mon loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet finite_set: FiniteSet{s} oal_inj: inj(k,v) infix_ap: y implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q false: False guard: {T} so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] null_mset: 0{s} oal_dom: dom(ps) mk_mset: mk_mset(as) top: Top mset_inj: mset_inj{s}(x) mset_sum: b append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pi1: fst(t) squash: T true: True
Lemmas referenced :  grp_car_wf set_car_wf abdmonoid_wf loset_wf oal_dom_wf2 oal_inj_wf grp_eq_wf grp_id_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf equal_wf eqtt_to_assert assert_of_mon_eq iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot fset_properties all_wf le_wf mset_count_wf nat_wf map_nil_lemma null_mset_wf list_ind_cons_lemma list_ind_nil_lemma map_cons_lemma squash_wf true_wf mset_wf mset_sum_ident_r mset_inj_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality dependent_functionElimination dependent_set_memberEquality applyEquality because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination productElimination independent_isectElimination sqequalRule independent_pairFormation impliesFunctionality voidElimination lambdaEquality natural_numberEquality isect_memberEquality voidEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}v:|b|.    (dom(inj(k,v))  =  if  v  =\msubb{}  e  then  0\{a\}  else  mset\_inj\{a\}(k)  fi  )



Date html generated: 2017_10_01-AM-10_03_03
Last ObjectModification: 2017_03_03-PM-01_05_35

Theory : polynom_2


Home Index