Nuprl Lemma : mset_sum_ident_r

s:DSet. ∀a:MSet{s}.  ((a 0{s}) a ∈ MSet{s})


Proof




Definitions occuring in Statement :  mset_sum: b null_mset: 0{s} mset: MSet{s} all: x:A. B[x] equal: t ∈ T dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] abmonoid: AbMon mon: Mon prop: comm: Comm(T;op) monoid_p: IsMonoid(T;op;id) and: P ∧ Q ident: Ident(T;op;id) assoc: Assoc(T;op) mset_mon: mset_mon{s} grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) infix_ap: y grp_id: e guard: {T}
Lemmas referenced :  mset_mon_wf mset_wf dset_wf abmonoid_properties mon_wf comm_wf grp_car_wf grp_op_wf mon_properties grp_sig_wf monoid_p_wf grp_id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis equalityTransitivity equalitySymmetry isectElimination applyEquality lambdaEquality setElimination rename setEquality cumulativity productElimination sqequalRule

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    ((a  +  0\{s\})  =  a)



Date html generated: 2016_05_16-AM-07_47_07
Last ObjectModification: 2015_12_28-PM-06_03_42

Theory : mset


Home Index