Nuprl Lemma : mset_mon_wf
∀s:DSet. (mset_mon{s} ∈ AbMon)
Proof
Definitions occuring in Statement : 
mset_mon: mset_mon{s}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
abmonoid: AbMon
, 
dset: DSet
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
mset_mon: mset_mon{s}
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
null_mset: 0{s}
, 
mset_sum: a + b
, 
ident: Ident(T;op;id)
, 
infix_ap: x f y
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
and: P ∧ Q
, 
mset: MSet{s}
, 
quotient: x,y:A//B[x; y]
, 
dset: DSet
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
dset_wf, 
mk_abmonoid, 
mset_wf, 
eq_mset_wf, 
btrue_wf, 
mset_sum_wf, 
null_mset_wf, 
mset_sum_assoc, 
mset_sum_comm, 
list_ind_nil_lemma, 
quotient-member-eq, 
list_wf, 
set_car_wf, 
permr_wf, 
permr_equiv_rel, 
append_wf, 
nil_wf, 
append_back_nil, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
lambdaEquality, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isect_memberFormation, 
introduction, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productEquality
Latex:
\mforall{}s:DSet.  (mset\_mon\{s\}  \mmember{}  AbMon)
Date html generated:
2016_05_16-AM-07_47_05
Last ObjectModification:
2015_12_28-PM-06_03_37
Theory : mset
Home
Index