Nuprl Lemma : mset_mon_wf

s:DSet. (mset_mon{s} ∈ AbMon)


Proof




Definitions occuring in Statement :  mset_mon: mset_mon{s} all: x:A. B[x] member: t ∈ T abmonoid: AbMon dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T mset_mon: mset_mon{s} uall: [x:A]. B[x] uimplies: supposing a null_mset: 0{s} mset_sum: b ident: Ident(T;op;id) infix_ap: y append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] and: P ∧ Q mset: MSet{s} quotient: x,y:A//B[x; y] dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q prop:
Lemmas referenced :  dset_wf mk_abmonoid mset_wf eq_mset_wf btrue_wf mset_sum_wf null_mset_wf mset_sum_assoc mset_sum_comm list_ind_nil_lemma quotient-member-eq list_wf set_car_wf permr_wf permr_equiv_rel append_wf nil_wf append_back_nil equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality lambdaEquality independent_isectElimination because_Cache sqequalRule isect_memberEquality voidElimination voidEquality isect_memberFormation introduction independent_pairFormation productElimination independent_pairEquality axiomEquality pointwiseFunctionalityForEquality pertypeElimination setElimination rename equalityTransitivity equalitySymmetry independent_functionElimination productEquality

Latex:
\mforall{}s:DSet.  (mset\_mon\{s\}  \mmember{}  AbMon)



Date html generated: 2016_05_16-AM-07_47_05
Last ObjectModification: 2015_12_28-PM-06_03_37

Theory : mset


Home Index