Nuprl Lemma : mset_sum_assoc
∀s:DSet. Assoc(MSet{s};λa,b. (a + b))
Proof
Definitions occuring in Statement : 
mset_sum: a + b
, 
mset: MSet{s}
, 
assoc: Assoc(T;op)
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
dset: DSet
Definitions unfolded in proof : 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mset_sum: a + b
, 
mset: MSet{s}
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
dset: DSet
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
mset_wf, 
dset_wf, 
list_wf, 
set_car_wf, 
quotient-member-eq, 
permr_wf, 
permr_equiv_rel, 
append_wf, 
equal_wf, 
equal-wf-base, 
append_assoc, 
permr_reflex, 
permr_functionality_wrt_permr, 
append_functionality_wrt_permr, 
permr_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
isectElimination, 
axiomEquality, 
because_Cache, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
lambdaEquality, 
independent_isectElimination, 
independent_functionElimination, 
productEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}s:DSet.  Assoc(MSet\{s\};\mlambda{}a,b.  (a  +  b))
Date html generated:
2017_10_01-AM-09_59_06
Last ObjectModification:
2017_03_03-PM-01_00_14
Theory : mset
Home
Index