Nuprl Lemma : append_functionality_wrt_permr
∀T:Type. ∀as,as',bs,bs':T List.  ((as ≡(T) as') ⇒ (bs ≡(T) bs') ⇒ ((as @ bs) ≡(T) (as' @ bs')))
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs, 
append: as @ bs, 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
permr: as ≡(T) bs, 
cand: A c∧ B, 
top: Top, 
squash: ↓T, 
uimplies: b supposing a, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
sym_grp: Sym(n), 
sq_type: SQType(T), 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
ge: i ≥ j , 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
perm: Perm(T), 
nat: ℕ, 
less_than: a < b, 
app_perm: app_perm(m;n;p;q), 
mk_perm: mk_perm(f;b), 
perm_f: p.f, 
pi1: fst(t), 
app_permf: app_permf(m;n;p;q), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
subtract: n - m, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
permr_wf, 
list_wf, 
length-append, 
istype-void, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
add_functionality_wrt_eq, 
length_wf, 
subtype_rel_self, 
iff_weakening_equal, 
subtype_rel-equal, 
perm_wf, 
int_seg_wf, 
append_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
subtype_base_sq, 
int_subtype_base, 
int_seg_subtype, 
istype-false, 
non_neg_length, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
select_wf, 
perm_f_wf, 
le_wf, 
less_than_wf, 
length_wf_nat, 
nat_properties, 
intformand_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_term_value_constant_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
app_perm_wf, 
lt_int_wf, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
le_int_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
zero-le-nat, 
int_seg_subtype_nat, 
select_append_front, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
add-member-int_seg2, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
add-associates, 
add-commutes, 
zero-add, 
select_append_back, 
add-subtract-cancel, 
set_subtype_base, 
lelt_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
isectElimination, 
universeEquality, 
productElimination, 
independent_pairFormation, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
because_Cache, 
independent_isectElimination, 
addEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_functionElimination, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
productIsType, 
equalityIsType1, 
applyLambdaEquality, 
setElimination, 
rename, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
functionIsType, 
equalityElimination, 
cumulativity
Latex:
\mforall{}T:Type.  \mforall{}as,as',bs,bs':T  List.    ((as  \mequiv{}(T)  as')  {}\mRightarrow{}  (bs  \mequiv{}(T)  bs')  {}\mRightarrow{}  ((as  @  bs)  \mequiv{}(T)  (as'  @  bs')))
Date html generated:
2019_10_16-PM-01_01_01
Last ObjectModification:
2018_10_08-PM-07_04_31
Theory : perms_2
Home
Index