Nuprl Lemma : append_functionality_wrt_permr

T:Type. ∀as,as',bs,bs':T List.  ((as ≡(T) as')  (bs ≡(T) bs')  ((as bs) ≡(T) (as' bs')))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs append: as bs list: List all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] permr: as ≡(T) bs cand: c∧ B top: Top squash: T uimplies: supposing a true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] sym_grp: Sym(n) sq_type: SQType(T) le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A ge: i ≥  int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) perm: Perm(T) nat: less_than: a < b app_perm: app_perm(m;n;p;q) mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) app_permf: app_permf(m;n;p;q) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff subtract: m so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  permr_wf list_wf length-append istype-void equal_wf squash_wf true_wf istype-universe add_functionality_wrt_eq length_wf subtype_rel_self iff_weakening_equal subtype_rel-equal perm_wf int_seg_wf append_wf length_append subtype_rel_list top_wf subtype_base_sq int_subtype_base int_seg_subtype istype-false non_neg_length int_seg_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf select_wf perm_f_wf le_wf less_than_wf length_wf_nat nat_properties intformand_wf itermConstant_wf int_formula_prop_and_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma app_perm_wf lt_int_wf equal-wf-T-base bool_wf assert_wf le_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int zero-le-nat int_seg_subtype_nat select_append_front subtract_wf itermSubtract_wf int_term_value_subtract_lemma add-member-int_seg2 minus-one-mul add-mul-special zero-mul add-associates add-commutes zero-add select_append_back add-subtract-cancel set_subtype_base lelt_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis inhabitedIsType isectElimination universeEquality productElimination independent_pairFormation sqequalRule isect_memberEquality_alt voidElimination applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry intEquality because_Cache independent_isectElimination addEquality natural_numberEquality imageMemberEquality baseClosed instantiate independent_functionElimination dependent_pairFormation_alt dependent_set_memberEquality_alt productIsType equalityIsType1 applyLambdaEquality setElimination rename unionElimination approximateComputation int_eqEquality functionIsType equalityElimination cumulativity

Latex:
\mforall{}T:Type.  \mforall{}as,as',bs,bs':T  List.    ((as  \mequiv{}(T)  as')  {}\mRightarrow{}  (bs  \mequiv{}(T)  bs')  {}\mRightarrow{}  ((as  @  bs)  \mequiv{}(T)  (as'  @  bs')))



Date html generated: 2019_10_16-PM-01_01_01
Last ObjectModification: 2018_10_08-PM-07_04_31

Theory : perms_2


Home Index