Nuprl Lemma : app_perm_wf

m,n:ℕ. ∀p:Sym(m). ∀q:Sym(n).  (app_perm(m;n;p;q) ∈ Sym(m n))


Proof




Definitions occuring in Statement :  app_perm: app_perm(m;n;p;q) sym_grp: Sym(n) nat: all: x:A. B[x] member: t ∈ T add: m
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T app_perm: app_perm(m;n;p;q) uall: [x:A]. B[x] nat: sym_grp: Sym(n) perm: Perm(T) implies:  Q inv_funs: InvFuns(A;B;f;g) and: P ∧ Q true: True squash: T prop: subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  mk_perm_wf_a int_seg_wf app_permf_wf perm_f_wf perm_b_wf perm_wf nat_wf perm_properties tidentity_wf equal_wf squash_wf true_wf istype-universe app_permf_comp subtype_rel_self app_permf_id iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality addEquality setElimination rename because_Cache hypothesis hypothesisEquality independent_functionElimination universeIsType inhabitedIsType productElimination independent_pairFormation functionEquality applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed instantiate functionIsType independent_isectElimination

Latex:
\mforall{}m,n:\mBbbN{}.  \mforall{}p:Sym(m).  \mforall{}q:Sym(n).    (app\_perm(m;n;p;q)  \mmember{}  Sym(m  +  n))



Date html generated: 2019_10_16-PM-00_59_44
Last ObjectModification: 2018_10_08-AM-09_20_27

Theory : perms_1


Home Index