Nuprl Lemma : app_permf_comp
∀m,n:ℕ. ∀p,p':ℕm ⟶ ℕm. ∀q,q':ℕn ⟶ ℕn.
  ((app_permf(m;n;p;q) o app_permf(m;n;p';q')) = app_permf(m;n;p o p';q o q') ∈ (ℕm + n ⟶ ℕm + n))
Proof
Definitions occuring in Statement : 
app_permf: app_permf(m;n;p;q)
, 
compose: f o g
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
compose: f o g
, 
app_permf: app_permf(m;n;p;q)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
int_seg_wf, 
nat_wf, 
lt_int_wf, 
equal-wf-base, 
bool_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
lelt_wf, 
assert_wf, 
less_than_wf, 
le_int_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal-wf-T-base, 
add_nat_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
decidable__lt, 
decidable__equal_int, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
add-subtract-cancel, 
add-member-int_seg2, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
minus-minus, 
add-commutes, 
zero-add, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
lambdaEquality_alt, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
functionIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
productElimination, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
applyLambdaEquality, 
imageElimination, 
pointwiseFunctionality, 
promote_hyp, 
minusEquality, 
multiplyEquality
Latex:
\mforall{}m,n:\mBbbN{}.  \mforall{}p,p':\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}m.  \mforall{}q,q':\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n.
    ((app\_permf(m;n;p;q)  o  app\_permf(m;n;p';q'))  =  app\_permf(m;n;p  o  p';q  o  q'))
Date html generated:
2019_10_16-PM-00_59_42
Last ObjectModification:
2018_10_08-AM-09_20_29
Theory : perms_1
Home
Index