Nuprl Lemma : app_permf_id

m,n:ℕ.  (app_permf(m;n;Id{ℕm};Id{ℕn}) Id{ℕn} ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  app_permf: app_permf(m;n;p;q) tidentity: Id{T} int_seg: {i..j-} nat: all: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  tidentity: Id{T} app_permf: app_permf(m;n;p;q) identity: Id all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  int_seg_wf nat_wf lt_int_wf bool_wf equal-wf-T-base assert_wf less_than_wf le_int_wf le_wf bnot_wf subtract-add-cancel int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformand_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma lelt_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lambdaEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename hypothesisEquality hypothesis equalityTransitivity equalitySymmetry baseClosed because_Cache productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality independent_pairFormation equalityElimination independent_functionElimination

Latex:
\mforall{}m,n:\mBbbN{}.    (app\_permf(m;n;Id\{\mBbbN{}m\};Id\{\mBbbN{}n\})  =  Id\{\mBbbN{}m  +  n\})



Date html generated: 2017_10_01-AM-09_52_48
Last ObjectModification: 2017_03_03-PM-00_47_32

Theory : perms_1


Home Index