Nuprl Lemma : app_permf_wf

m,n:ℕ. ∀p:ℕm ⟶ ℕm. ∀q:ℕn ⟶ ℕn.  (app_permf(m;n;p;q) ∈ ℕn ⟶ ℕn)


Proof




Definitions occuring in Statement :  app_permf: app_permf(m;n;p;q) int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T app_permf: app_permf(m;n;p;q) uall: [x:A]. B[x] int_seg: {i..j-} nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a lelt: i ≤ j < k le: A ≤ B less_than: a < b prop: subtype_rel: A ⊆B less_than': less_than'(a;b) false: False not: ¬A guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int int_seg_wf lelt_wf int_seg_subtype false_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf add-member-int_seg2 subtract_wf itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma decidable__lt nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lambdaEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache unionElimination equalityElimination productElimination independent_isectElimination applyEquality functionExtensionality natural_numberEquality dependent_set_memberEquality independent_pairFormation addEquality equalityTransitivity equalitySymmetry applyLambdaEquality dependent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp instantiate cumulativity independent_functionElimination functionEquality

Latex:
\mforall{}m,n:\mBbbN{}.  \mforall{}p:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}m.  \mforall{}q:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n.    (app\_permf(m;n;p;q)  \mmember{}  \mBbbN{}m  +  n  {}\mrightarrow{}  \mBbbN{}m  +  n)



Date html generated: 2017_10_01-AM-09_52_46
Last ObjectModification: 2017_03_03-PM-00_47_40

Theory : perms_1


Home Index